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Summary in One Slide (Slide 1/47)

I will describe a new algorithm which uses Cylindrical Algebraic
Coverings (CACs) to decide whether a set of non-linear real
polynomial constraints can be satisfied.
The algorithm reformulated classical idea from computer algebra
into a new presentation suitable for use in SMT-solvers and
inspired by other algorithms they use.

Why Care?
The implementation in CVC5 won at the 2022 SMT
Competition (QFNRA Track) and work is ongoing to extend
the approach to tackle more problems.
The over-arching idea of combining Satisfiability Checking and
Symbolic Computation has found success in several domains -
could it have potential in your work?
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Cylindrical Algebraic Decomposition I (Slide 4/47)

A Cylindrical Algebraic Decomposition (CAD) is a
mathematical object with the following properties:

It is a decomposition of Rn into a set of cells Ci .
I.e. ⋃

i Ci = Rn; and Ci ∩ Cj = ∅ if i ̸= j .
The cells are semi-algebraic, meaning that each may be
described by a finite sequence of polynomial constraints.
The cells are cylindrical meaning the projection of any two
cells onto a lower coordinate space in the variable ordering are
either identical or disjoint. I.e. the cells in Rm stack up in
cylinders over cells from CAD in Rm−1; with the projection
explicit in the cell’s semi-algebraic description.
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Cylindrical Algebraic Decomposition II (Slide 5/47)

CAD may also refer to an algorithm that produces the CAD object.

The traditional CAD algorithm introduced by Collins in the 1970s
takes a set of input polynomials and produces a CAD such that
each polynomial has constant sign in each cell: this additional
property is called sign-invariance.
Such a CAD allows us to uncover properties of polynomials over
infinite space by examining finite set of sample points.

Most applications actually provide as input a Tarski formula:
logical formulae built from polynomial constraints. They require as
output a truth-invariant CAD: one such that each formula has
constant truth value in each cell.
Such a CAD allows us to find solution sets from the descriptions of
true cells: semi-algebraic; easy to visualise and check membership.
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Cell 1: x < −1, y free
Cell 2: x = −1, y < 0
Cell 3: x = −1, y = 0
Cell 4: x = −1, y > 0
Cell 5: −1 < x < 1,

y 2 + x2 − 1 > 0, y < 0
Cell 6: −1 < x < 1,

y 2 + x2 − 1 = 0, y < 0
Cell 7: −1 < x < 1,

y 2 + x2 − 1 < 0
Cell 8: −1 < x < 1,

y 2 + x2 − 1 = 0, y > 0
Cell 9: −1 < x < 1,

y 2 + x2 − 1 > 0, y > 0
Cell 10: x = 1, y < 0
Cell 11: x = 1, y = 0
Cell 12: x = 1, y > 0
Cell 13: x > 1, y free
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The cylindricity means we can think of CAD as a tree branching by
variable restriction. For the circle:
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How to build a CAD? (Slide 8/47)

Two steps in usual approach:
projection which uses algebraic operations
to create a finite set of polynomials whose
roots indicate changes in the behaviour of
the input set; then
lifting which systematically applies real
root evaluation on these to count roots
and generate cells in cylinders.

Real root evaluation is performed on
univariate polynomials obtained by
substituting a sample point for the cell
being lifted over. Is this safe to do?

E.g. This stack has 3
sections and 4 sectors.
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Delineability (Slide 9/47)

The projection operation needs to be defined so working at a
sample point is representative of the cell: delineability.
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Classic CAD References (Slide 10/47)

[Col75] G.E. Collins.
Quantifier elimination for real closed fields by cylindrical
algebraic decomposition.
Proc. 2nd GI Conference on Automata Theory and Formal
Languages, pages 134 − 183. Springer-Verlag, 1975.
Reprinted in [CJ98].

[CJ98] B. Caviness and J. Johnson.
Quantifier elimination and cylindrical algebraic decomposition.
Texts & Monographs in Symbolic Computation.
Springer-Verlag, 1998

The former is the original CAD paper of Collins. The latter is a
book containing that and many paper on CAD improvements and
extensions in the next 20 years.

M. England Cylindrical Algebraic Coverings



Background on CAD
SC-Square and CAD

Cylindrical Algebraic Coverings

Definition
Applications of CAD
Complexity and Implementations

Algebraic numbers and root expressions (Slide 11/47)

CAD takes polynomials with coefficients in Q as input, but their
roots may be algebraic numbers defined by root expressions, e.g.:
√

2 = RootOf(x2 − 2, x , index = real [2]) = RootOf(x2 − 2, x , 1..2)

Semi-algebraic formula for blue region:

x2 + y2 − 1 < 0 ∧ y − x > 0 ∧ x > 0

Cylindrical formula for blue region:

0 <x < RootOf(2x2 − 1, x , index = real [2])
x <y < RootOf(y2 + x2 − 1, y , index = real [2])

Projection and lifting naturally produces cylindrical formulae, extra
work is needed for semi-algebraic formulae.
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Real Quantifier Elimination (Slide 12/47)

Real Quantifier Elimination (Real QE)
Given: Quantified formulae in prenex form with atoms integral
polynomial constraints.
Produce: a quantifier free formula logically equivalent over R.

Fully quantified examples:

Input: ∀x , x2 + 1 ≤ 0
Output: False

Input: ∃x , x2 + 3x + 1 ≤ 0
Output: True

Partially quantified example:

Input: ∃x , x2 + bx + 1 ≤ 0
Output: (b ≤ −2) ∨ (b > 2)

When partially quantified the
answer depends on the free
(unquantified) variables.
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QE via CAD Example (Slide 13/47)

Existential QE is via projection of true CAD cells onto free
variables. Universal QE is via ∀xF (x) = ¬∃x¬F (x). For example:

∃x , x2 + bx + 1 ≤ 0

Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0 at sample.
Take disjunction of projections of
the true cells:

b < −2 ∨ b = −2
∨b = 2 ∨ b > 2
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Important Sidenote: Variable Ordering (Slide 14/47)

The cylindricity condition, and thus CAD algorithms, are defined
with respect to a variable ordering.
I.e. x1 ≺ . . . ≺ xn implies we consider the sequence of projections
onto (x1, . . . , xk) for k from 1 to n − 1.

The variable ordering may be restricted or free depending on the
problem at hand. For QE:

We need to be able to project cells onto the unquantified
variables, so these must appear higher in the ordering.
The variables must be ordered as in the quantification;
but we can swap adjacent variables if they are quantified by
the same quantifier (or none at all).

This leaves a degree of choice for CAD. Can have a big effect on
the coarseness of the decomposition and computation time.
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Example of variable ordering importance (Slide 15/47)

Sign invariant CADs for the set of polynomials{
x2 + (y − 2)2 − 1, 2x2 + (y − 4)2 − 2, y − x2 + 4, y + x2

}
.

Projecting onto x requires 105 cells, but onto y requires 215.
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Other applications of CAD (Slide 16/47)

QE has applications throughout engineering & science. E.g.
derivation of optimal numerical schemes (Erascu-Hong, 2016);
automatically proving inequalities from combinatorics
(Gerhold and Kauers, 2005);
automated theorem proving (Paulson, 2012);
automated loop parellisation (Grösslinger et al. 2006);
analysis of economic hypotheses (Mulligan et al., 2018).

CAD has also been applied independently of QE, e.g.
multi-stationarity identification in chemical reaction networks
(Bradford et al. 2017).
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Application References (Slide 17/47)

R. Bradford, J.H. Davenport, M.England, H. Errami, V.Gerdt,
D.Grigoriev, C.Hoyt, M.Kosta, O.Radulescu, T.Sturm, and
A.Weber.
Identifying the parametric occurrence of multiple steady states
for some biological networks
Journal of Symbolic Computation, 98:84−119, 2020.
M. Erascu and H. Hong.
Real Quantifier elimination for the synthesis of optimal
numerical algorithms (Case study: Square root computation).
Journal of Symbolic Computation, 75:110−126, 2016.
A. Grosslinger, M. Griebl, and C. Lengauer.
Quantifier elimination in automatic loop parallelization.
Journal of Symbolic Computation, 41(11):1206−1221, 2006.
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Application References cont. (Slide 17/47)

S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving
a discrete parameter.
Proc. ISSAC 2005, pages 156−−162. ACM, 2005.
C.B. Mulligan, J.H. Davenport, and M. England.
TheoryGuru: A Mathematica Package to apply Quantifier
Elimination
Proc. ICMS 2018, LNCS 10931, pages 369−378, Springer,
2018.
L.C. Paulson.
Metitarski: Past and future.
Interactive Theorem Proving (LNCS 7406), pages 1−10,
Springer 2012.
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CAD Complexity (Slide 18/47)

To build a CAD we repeatedly project polynomials to encode key
geometric information.

By the end of projection you could have doubly exponentially many
polynomials of doubly exponential degree (in the number of
projections, i.e. variables). Hence the number of real roots, cells,
and time to compute them grows doubly exponentially too.

C. Brown and J.H. Davenport.
The complexity of quantifier elimination and cylindrical
algebraic decomposition.
In Proc. ISSAC ’07, pages 54–60. ACM, 2007.

Nevertheless, CAD remains the most used general purpose method
for real QE.
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The Doubly Exponential Wall (Slide 19/47)

Exponential Growth Doubly Exponential Growth

Images by Tereso del Río
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CAD Implementations (Slide 20/47)

CAD implementations can be found in:
Mathematica using CylindricalDecomposition

Maple, under RegularChains :- SemiAlgebraicSetTools
:- CylindricalAlgebraicDecompose.
Maple, in the third party SyNRAC package.
Maple, in an upcoming QuantifierElimination package.
Reduce, using the Redlog package command rlcad.
QEPCAD-B and Tarski: Linux only, but now available online:
https://matek.hu/tarski/tarski-jt.html
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Boolean SAT Problem (Slide 21/47)

The Boolean SAT Problem is to decide if a given logical formula
with Boolean valued variables is satisfiable, i.e. there exists an
assignment of values to variables to make the formula true.

Examples:
F1 = (x ∨ y) ∧ (¬x ∨ ¬z)

F1 is satisfied by x = T , y = T , z = F . Also by other assignments.

F2 = (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y)

F2 is unsatisfiable.

If the formula has n variables then there are 2n possible
assignments. The SAT problem is NP-Complete.
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SAT-Solvers (Slide 22/47)

SAT-solvers are tools dedicated to solving the SAT Problem.
They can routinely solve huge problem instances!

Graph from J. Marques-Silva and
K.Sakallah

Graph from V. Ganesh

SAT-solvers are now used routinely in industry, and increasingly in
mathematics too.
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Key SAT Algorithmic Advances (Slide 23/47)

In 1961 the DPLL Algorithm described how to use propagation
and backtracking to process the search space efficiently.
In 1996 the CDCL Algorithm described how growing the
formula with clauses that rule out the infeasible combinations
discovered can make future search more efficient.
M. Davis and H. Putnam.
A Computing Procedure for Quantification Theory.
J. ACM, 7(3), 201−215, 1960.

M. Davis, G. Logemann, and D. Loveland.
A Machine Program for Theorem Proving.
C. ACM, 5(7), 394−397, 1961.

J.P. Marques-Silva and K.A. Sakallah.
GRASP-A New Search Algorithm for Satisfiability.
Proc. ICCAD, 220-227. IEEE, 1996.
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Key Lessons from SAT (Slide 24/47)

Problems encountered rarely exhibit the worst case complexity.
Usually much easier to prove satisfiability (find an example)
than to prove unsatisfiability.
Try to rule out whole branches of search space at a time.

Note: Modern SAT solvers assume input in Conjunctive Normal
Form: conjunctions of clauses, which are disjunctions of logical
atoms. Why?

Easy to analyse sub-problems (each clause must be satisfied).
Easy to record information for later, e.g. add a clause that
forces us to avoid searching a similar part of the search space.
Electronic circuits can be transformed to CNF efficiently.
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Satisfiability Modulo Theories (Slide 25/47)

A Satisfiability Modulo Theory (SMT) Problem is a SAT
Problem where the atoms are not Boolean variables, but
statements that evaluate to a Boolean.

The statements exist in well defined theories.
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Lazy SMT Framework (Slide 26/47)
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SMT Example (Slide 27/47)

Consider the following problem in the QF_NRA theory.

R : (v2 > 10 ∨ v + 1 > 3) ∧ (v2 ≤ 10 ∨ v = 1) v ∈ R

Let x be v2 > 10, y be v + 1 > 3, and z be v ̸= 1. Then we have
Boolean skeleton

B : (x ∨ y) ∧ (¬x ∨ ¬z)

A SAT-solver may propose a solution, x = T , y = T , z = F but
that is not valid in the theory. We cannot have x = T (v2 > 10)
and z = F (v = 1) at the same time. So add a clause to avoid it:

B′ : (x ∨ y) ∧ (¬x ∨ ¬z) ∧ (¬x ∨ z)

A SAT solver can now find x = F , y = T , z = T which is
acceptable in the theory (with v = 3).
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SC-Square Definition (Slide 28/47)

SC: Satisfiability Checking Community
Interested in algorithms to check satisfiability of logic
problems with variables from a variety of
mathematical domains. Implement solutions in
SAT/SMT solvers.

SC: Symbolic Computation Community
Interested in algorithms to perform algebraic
computations, such as polynomial computations over
real and complex numbers. Implement solutions in
Computer Algebra Systems.

SC2: SC-Square Community
Interested in both SCs above!
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Separate Histories (Slide 29/47)

Until the last decade the two communities rarely interacted.

Timeline by E. Ábrahám
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The EU SC2 Project (Slide 30/47)

The EU funded The SC-Square Project from 2016-2018. The
aim was to bridge the gap between the communities to produce
individuals who can combine the knowledge and techniques of both
fields to resolve problems currently beyond the scope of either.

The project funded new collaborations, new tool integrations,
proposals on extensions to the SMT-LIB language standards, new
collections of benchmarks, the SC-Square Workshop Series, a
special issue of JSC (vol 100), and two summer schools. Slides and
videos from the first remain online here:
http://www.sc-square.org/CSA/school/lectures.html

Although the project finished, the workshop series continues, and
the website and mailing lists remain active: www.sc-square.org
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SC-Square Project Reference

E. Ábrahám, J. Abbott, B. Becker, A.M. Bigatti, M. Brain,
B. Buchberger, A. Cimatti, J.H. Davenport, M. England,
P. Fontaine, S. Forrest, A. Griggio, D. Kroening, W.M. Seiler,
and T. Sturm.
SC2: Satisfiability checking meets symbolic computation.
In M. Kohlhase, M. Johansson, B. Miller, L. de Moura, and
F. Tompa, editors, Intelligent Computer Mathematics:
Proceedings CICM 2016, volume 9791 of Lecture Notes in
Computer Science, pages 28–43. Springer International
Publishing, 2016.
URL https://doi.org/10.1007/978-3-319-42547-4_3.
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SC-Square Workshop Series (Slide 31/47)

2016 Timisoara, Romainia (as part of SYNASC 2016).
2017 Kaiserslautern, Germany (alongside ISSAC 2017).
2018 Oxford, UK (as part of FLoC 2018).
2019 Bern, Switzlerland (as part of SIAM AG19)
2020 Paris, France (online) (alongside IJCAR 2020)
2021 Texas, USA (online) (as part of SIAM AG21)
2022 Haifa, Israel (as part of FLoC 2022)
2023 Tromsø, Norway (alongside ISSAC 2023)

If you have work that involves both SC’s then please consider
submitting for a presentation in Tromsø!
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SC-Square Successes I (Slide 32/47)

Maple can now read to and from SMT-LIB (Forrest, 2017)
and ships with the both the Z3 and MapleSAT.

CoCoALib C++ Library that underpins CoCoA (Abbott and
Bigatti, 2014) used by MathSAT and SMT-RAT.

Incremental Linearlization techniques developed in MathSAT for
non-linear problems (Cimatti et al. 2018).

MathCheck has made significant progress on a variety of
combinatorics problems from a combination of
SAT-solvers and computer algebra, enumerating new
cases and verifying conjectures. E.g. Williamson
Matrices (Bright et al. 2020).
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SC-Square Successes II (Slide 33/47)

Boolean SAT has also benefited from symbolic computation via
Boolean Groebner Bases and parallel computation on
both the conjunctive and algebraic normal forms of a
problem (Horáček and Kreuzer, 2020).

Circuit Verification Algebraic techniques key for circuit verification
and in combination with SAT-solvers (Kaufmann,
Biere, and Kauers, 2019).

New Applications in Economics (Mulligan et al., 2018), and
Dynamic Geometry (Vajda and Kovács, 2020).
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SC-Square Successes References I
S.A. Forrest.
Integration of SMT-LIB support into maple.
In M. England and V. Ganesh, editors, Proc. (SC2 2017), number 1974 in
CEUR-WS, 2017.
URL http://ceur-ws.org/Vol-1974/.

J. Abbott and A.M. Bigatti.
What is new in CoCoA?
In H. Hong and C. Yap, editors, Mathematical Software – ICMS 2014,
LNCS 8592, pages 352–358. Springer Heidelberg, 2014.
URL https://doi.org/10.1007/978-3-662-44199-2_55.

A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani.
Incremental linearization: A practical approach to satisfiability modulo
nonlinear arithmetic and transcendental functions.
In Prov. SYNASC 2018, pages 19–26, IEEE, 2018.
URL http://doi.org/10.1109/SYNASC.2018.00016.

M. England Cylindrical Algebraic Coverings

http://ceur-ws.org/Vol-1974/
https://doi.org/10.1007/978-3-662-44199-2_55
http://doi.org/10.1109/SYNASC.2018.00016


Background on CAD
SC-Square and CAD

Cylindrical Algebraic Coverings

Satisfiability Checking
SC-Square
CAD for SMT

SC-Square Successes References II

C. Bright, I. Kotsireas, and V. Ganesh.
Applying computer algebra systems with SAT solvers to the Williamson
conjecture.
Journal of Symbolic Computation, 100:187–209, 2020.
URL https://doi.org/10.1016/j.jsc.2019.07.024.

J. Horáček and M. Kreuzer.
On conversions from CNF to ANF.
Journal of Symbolic Computation, 100:164–186, 2020.
URL https://doi.org/10.1016/j.jsc.2019.07.023.

D. Kaufmann, A. Biere, and M. Kauers.
Verifying large multipliers by combining SAT and computer algebra.
In Formal Methods in Computer Aided Design (FMCAD 2019), pages
28–36. IEEE, 2019.
URL https://doi.org/10.23919/FMCAD.2019.8894250.
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SC-Square Successes References III

C. Mulligan, R. Bradford, J.H. Davenport, M. England, and Z. Tonks.
Non-linear real arithmetic benchmarks derived from automated reasoning
in economics.
In A.M. Bigatti and M. Brain, editors, Proceedings of the 3rd Workshop
on Satisfiability Checking and Symbolic Computation (SC2 2018), number
2189 in CEUR Workshop Proceedings, pages 48–60, 2018.
URL http://ceur-ws.org/Vol-2189/.

R. Vajda and Z. Kovács.
GeoGebra and the realgeom reasoning tool.
In P. Fontaine, K. Korovin, I.S. Kotsireas, P. Rümmer, and S. Tourret,
editors, Proceedings of the 5th Workshop on Satisfiability Checking and
Symbolic Computation (SC2 2020), number 2752 in CEUR Workshop
Proceedings, pages 204–219, 2020.
URL http://ceur-ws.org/Vol-2752/.
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SC-Square for QF_NRA (Slide 34/47)

In this case the theory solver must determine the satisfiability of a
formula in Non-linear Real Arithmetic (NRA). I.e. to evaluate

∃x1, ∃x2, . . . , ∃xn F (x1, x2, . . . , xn)

as either True (SAT) or False (UNSAT). Here F is a CNF whose
atoms are sign constraints on non-linear multivariate polynomials
with integer coefficients.

A sub-problem of Real QE. So one approach is to use a computer
algebra system as theory solver. E.g. Redlog+VeriT:

P. Fontaine, M. Ogawa, T. Sturm, V. Khanh To, and X. Tung Vu.
Wrapping computer algebra is surprisingly successful for non-linear SMT.
In A.M. Bigatti and M. Brain, editors, Proc. SC2 2018, CEUR-WS 2189,
pages 110–117, 2018.
URL http://ceur-ws.org/Vol-2189/.
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CAD as NRA Theory Solver (Slide 35/47)

To be efficient, SMT theory solvers should be adapted for:
Incrementality: Add a constraint and divide cells.
Backtracking: Remove a constraint and merge cells.
Explanations: When no cell satisfies constraints identify
minimal subset of constraints which are mutually unsatisfiable.

Such an adaptation was created in SMT-RAT:
G. Kremer and E. Ábrahám.
Fully incremental cylindrical algebraic decomposition.
J. of Symbolic Computation, 100, pages 11–37. Elsevier, 2020.
https://doi.org/10.1016/j.jsc.2019.07.018

(Q) Why is SAT solver + CAD better than CAD alone?
(A) Because in SMT a theory solver commonly only addresses a
small subset of the total constraints at once.
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Sidenote: SMT-RAT (Slide 36/47)

The SMT-RAT Toolbox has adapted many computer algebra
algorithms for use in CAD, including CAD, virtual substitution,
branch and bound, Fourier Motzkin variable elimination, interval
constraint propagation, Gröbner Bases, and more.

G. Kremer and E. Ábrahám.
Modular strategic SMT solving with SMT-RAT.
Acta Universitatis Sapientiae, Informatica, 10(1):5–25, 2018.
URL http://dx.doi.org/10.2478/ausi-2018-0001.
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How good is such a CAD adaptation? (Slide 37/47)

For problems where the solution is SAT this approach tends to
determine the solution much faster than CAD alone as it can
terminate earlier when a satisfying witness is discovered.

For UNSAT problems this approach can still be faster if it allows to
reach the conclusion by studying multiple smaller problems; but it
may still require the computation of some very large
decompositions.

Can we adapt CAD further to avoid this?
Yes: by following approaches used by SAT-solvers which search
the sample spaces by: making guesses, propagating, and
generalising conflicts to avoid similar parts of the search space.
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NLSAT / MCSAT (Slide 38/47)

Jovanović and de Moura’s algorithm for Microsoft’s Z3 solver
departs from the Lazy SMT framework for QF_NRA problems.
Instead of the usual loop between SAT and theory solvers:

partial model solutions for the Boolean skeleton and the
algebraic theory are built in parallel;
Boolean conflicts generalised using the CDCL approach;
theory conflicts generalised through the creation of a single
CAD cell: the cell around the theory model point where the
polynomials involved in the conflict are sign invariant.
The learnt clause is the negation of the cell description.

Originally called the NLSAT Algorithm. Later the approach was
generalised for use with other theories, and it is now called the
Model Construction Satisfiability Calculus (MCSAT).
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MCSAT Implications (Slide 39/47)

Less projection (only polynomials in the conflict) and less root
isolation (only once per level). Further optimisations in cell
production have also been found (Brown, 2013).

The cells are produced independently of each other:
When UNSAT is concluded it usually means we have
produced a covering of the theory space.
I.e. ⋃

i Ci = Rn but Ci ∩ Cj need not be empty.
The cells are locally cylindrical (projections trivial via cell
description) but do not stack up in global cylinders.

NLSAT outperforms SAT+CAD in the SMT framework. But
because it is a different framework it cannot be easily combined
with other SMT modules for problems in multiple theories. Can we
produce a covering based algorithm that fits in the Lazy SMT
Framework?
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MCSAT References

D. Jovanović and L. de Moura.
Solving Non-linear Arithmetic.
Proc. IJCAR 2012, LNCS 7364, pp. 339-354. Springer, 2012.
https://doi.org/10.1007/978-3-642-31365-3_27

L. de Moura. and D. Jovanović
A model-constructing satisfiability calculus.
Proc. VMCAI 2013, LNCS 7737, pp. 1-12. Springer, 2013.
https://doi.org/10.1007/978-3-642-35873-9_1

C. Brown
Constructing a single open cell in a cylindrical algebraic
decomposition
Proc. ISSAC 2013, pp. 133-140. ACM, 2013.
https://doi.org/10.1145/2465506.2465952
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Conflict Driven Cylindrical Algebraic Covering (Slide 40/47)

We designed a theory solver algorithm based on a Conflict Driven
search using Cylindrical Algebraic Coverings (CDCAC):

E. Ábrahám, J.H. Davenport, M. England and G. Kremer.
Deciding the consistency of non-linear real arithmetic constraints with a
conflict driven search using cylindrical algebraic coverings.
JLAMP 119, pages 2352-2208. Elsevier, 2021.
https://doi.org/10.1016/j.jlamp.2020.100633

Similar to NLSAT:
Builds covering not decomposition.
Conflict Driven so search guided away from past conflicts.

Unlike NLSAT:
May be used as traditional SMT Theory Solver.
Structured guidance to search in algebraic procedure.
Cells are arranged cylindrically.
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CDCAC: Basic Idea (Slide 41/47)

Pick sample for lowest variable in ordering.
Extend to increasingly higher dimensions in reference to those
constraints made univariate.
If all constraints satisfied then conclude SAT.
If a constraint cannot be satisfied generalise to CAD cell in
current dimension.
Search outside the cell in that dimension.
If entire dimension covered by cells then generalise to rule out
cell in dimension below using CAD projection.
Conclude UNSAT when covering for lowest dimension
obtained.

Following slides by Gereon Kremer show simple example.
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CDCAC Experimental Results I (Slide 42/47)

An initial implementation was made in SMT-RAT and experiments
on the SMTLIB were described in the JLAMP paper:

Showed CDCAC much more efficient as theory solver that
incremental CAD.
But did not outperform NLSAT routine in SMT-RAT overall.
Did outperform NLSAT on substantial example subsets:

555 problems where CDCAC times out and NLSAT completes.
358 problems where NLSAT times out and CDCAC completes.

Although both algorithms create coverings, they seem to create
different ones. Potential for a meta-solver?

M. England Cylindrical Algebraic Coverings
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CDCAC Experimental Results II (Slide 43/47)

A new implementation of CDCAC was made in cvc5 by Gereon
Kremer. Can download cvc5 for free here:
https://cvc5.github.io/downloads.html

The cvc5 solver won the 2022 SMT Competition, and in particular
the QF_NRA track:
https://smt-comp.github.io/2022/results/qf-nonlinearintarith-single-query
Z3 (which uses MCSAT) did not enter, but results in the paper
below show cvc5 outperforming Z3.

G. Kremer, E. Ábrahám, M. England and James H. Davenport.
On the Implementation of Cylindrical Algebraic Coverings for Satisfiability
Modulo Theories Solving.
Proc. SYNASC 2021, pages 37−39. IEEE, 2021.
https://doi.org/10.1109/SYNASC54541.2021.00018
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Proofs for SMT Verification (Slide 44/47)

Machine readable proofs of unsatisfiability is a growing trend in
SMT: cvc5 achieves this for many theories but not yet NRA.

H. Barbosa et al.
Flexible Proof Production in an Industrial-Strength SMT Solver.
Proc. IJCAR 2022, LNCS 13385, pages 15-35. Springer, 2022.
https://doi.org/10.1007/978-3-031-10769-6_3

We hypothesise that the structure of the CDCAC search may allow
for easier extraction of such proofs.

E. Ábrahám, J.H. Davenport, M. England, G. Kremer, and Z. Tonks.
New Opportunities for the Formal Proof of Computational Real
Geometry?.
Proc. SC2 2020, CEUR-WS 2752, pages 178−188, 2020.
http://ceur-ws.org/Vol-2752/
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Impact for computer algebra? (Slide 45/47)

The story above shows how a combined SC-Square approach has
led to better Satisfiability Checking. But is there better computer
algebra too?

Recall that CAD was developed to solve the Real QE Problem, of
which satisfiability in QF_NRA is simply a small subclass. Can
SC-Square ideas tackle this too?

G. Kremer and J. Nalbach.
Cylindrical Algebraic Coverings for Quantifiers.
To Appear: Proc. SC2 2022.

A first attempt has been made to extend the CDCAC algorithm to
Real QE. Awaiting implementation.
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NuCAD (Slide 46/47)

Non-uniformly cylindrical CAD (NuCAD) produces a
decomposition (not covering) where the the cells are not arranged
cylindrically: allows for fewer cells, but necessitates additional work
to perform QE. To date only developed for open cells.

C. Brown.
Open non-uniform cylindrical algebraic decompositions.
Proc. ISSAC 2015, pages 85-92. ACM, 2015.
https://doi.org/10.1145/2755996.2756654

C. Brown.
Projection and Quantifier Elimination Using Non-uniform Cylindrical
Algebraic Decomposition.
Proc. ISSAC 2017, pages 53-60. ACM, 2017.
https://doi.org/10.1145/3087604.3087651
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NuCAD Example (Slide 47/47)
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The End

The author continues to work on these topics continues in the
EPSRC DEWCAD Project (Grant EP/T015748/1): Pushing Back
the Doubly Exponential Walls of Cylindrical Algebraic
Decomposition

Contact Details
Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/
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