
Iterated vs Multivariate Resultants
Optimisations

Iterated Resultants
in Cylindrical Algebraic Decomposition

James H. Davenport (University of Bath)
and Matthew England (Coventry University)

8th International Workshop on Satisfiability Checking and
Symbolic Computation, 28th July 2023

Tromsø, Norway

Supported by EPSRC DEWCAD Project, Pushing Back the Doubly-Exponential Wall
of Cylindrical Algebraic Decomposition (EP/T015713/1 and EP/T015748/1).

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Definition and Plan (Slide 1/18)

The resultant of two polynomials is a polynomial formed of their
coefficients that is equal to zero if and only if the two original
polynomials have a common root.

Iterated resultants are a key ingredient in Cylindrical Algebraic
Decomposition (CAD) [Col75]. Thus also in the SMT tools
developed based on CAD technology, e.g. NLSAT/MCSAT
[JdM12] and Cylindrical Algebraic Coverings [ADEK21].

[Col75, pp. 177–178] suggests that iterated resultants, where there
are “common ancestors” tend to factor. We present here some
prelinary ideas on optimisations emitting from this, in the context
of SC-Square technology.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Outline

1 Iterated vs Multivariate Resultants
Theory
Example

2 Optimisations
Discarding Spurious Factors
Detecting Spurious Factors

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Outline

1 Iterated vs Multivariate Resultants
Theory
Example

2 Optimisations
Discarding Spurious Factors
Detecting Spurious Factors

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Inertia Forms (Slide 2/18)

Let A be a set of r homogeneous polynomials F1, . . ., Fr in
x1, . . ., xn, with indeterminate coefficients. An integral polynomial
T in these indeterminates (that is, T ∈ Z[A]) is called an inertia
form for F1, . . ., Fr if x τ

i T ∈ (F1, . . ., Fr ), for suitable i and τ .

The inertia forms comprise an ideal I of Z[A], and van der
Waerden1950 showed that I is a prime ideal of this ring. It follows
from these observations that we may take the ideal I of inertia
forms to be a resultant system for the given F1, . . ., Fr in the sense
that for special values of the coefficients in K , the vanishing of all
elements of the resultant system is necessary and sufficient for
there to exist a non-trivial solution to the system
F1 = 0, . . ., Fr = 0 in some extension of K .

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Homogenous Multipolynomial Resultant (Slide 3/18)

Consider n homogeneous polynomials in n variables. Let F1, . . ., Fn
be n generic homogeneous forms in x1, . . ., xn of positive total
degrees d1, . . ., dn. I.e. every possible coefficient of each Fi is a
distinct indeterminate, and the set of all coefficients is A. Let I
denote the ideal of inertia forms for F1, . . ., Fn.

McCallum and Winkler proved the following.
[MW18, Proposition 5]: I is a nonzero principal ideal of Z[A]:
I = (R), for some R ̸= 0. R is uniquely determined up to sign. We
call R the (generic multipolynomial) resultant of F1, . . ., Fn.
[MW18, Proposition 6] The vanishing of R for particular F1, . . ., Fn
with coefficients in a field K is necessary and sufficient for the
existence of a non-trivial zero of the system F1 = 0, . . ., Fn = 0 in
some extension of K .

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

The Multivariate Resultant (Slide 4/18)

For a given non-homogeneous f (x1, . . ., xn−1) over K of total
degree d, we may write f = Hd + Hd−1 + · · · + H0, where the Hj
are homogeneous of degree j . Then Hd is known as the leading
form of f . Recall that the homogenization F (x1, . . ., xn) of f is
defined by F = Hd + Hd−1xn + · · · + H0xdn

n .

Let f1, . . ., fn be particular non-homogeneous polynomials in
x1, . . ., xn−1 over K of positive total degrees di , and with leading
forms Hi ,di . We set res(f1, . . ., fn) = res(F1, . . ., Fn) , where Fi is
the homogenization of fi to define the multivariate resultant of n
non-homogeneous polynomials in n − 1 variables.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Properties of the Multivariate Resultant (Slide 5/18)

[MW18, Proposition 7]: The vanishing of res(f1, . . ., fn) is
necessary and sufficient for

either the forms Hi ,di to have a common nontrivial zero
over an extension of K ,

or the polynomials fi to have a common zero over an
extension of K .

Observe that the common zeros of the fi correspond to the affine
solutions of the system, whereas the nontrivial common zeros of
the leading forms correspond to the projective solutions on the
hyperplane at infinity.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Outline

1 Iterated vs Multivariate Resultants
Theory
Example

2 Optimisations
Discarding Spurious Factors
Detecting Spurious Factors

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Example (Slide 6/18)

Consider these polynomials:

f = y2 + z2 + x + z − 1,

g = −x2 + y2 + z2 − 1,

h = x2 + y + z .

Under variable ordering z ≻ y ≻ x we may calculate the iterated
resultant resy(resz(f, g), resz(f, h)) as

= 5x8 + 16x7 + 14x6 − 2x5 − 12x4 − 8x3 + 3x2 + 2x
= x

(
5x3 + 6x2 − 3x − 2

)
︸ ︷︷ ︸

spurious

(
x2 + x + 1

) (
x2 + x − 1

)
︸ ︷︷ ︸

genuine

. (1)

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Genuine vs Spurious (Slide 7/18)

The roots of the factors labelled as “genuine” are

{x : ∃y∃zf (x , y , z) = g(x , y , z) = h(x , y , z) = 0}, (2)

whereas the roots of the factors labelled as “spurious” are{
x : ∃y

(
∃z1f (x , y , z1) = g(x , y , z1) = 0 ∧ (3)
∃z2 ̸= z1f (x , y , z2) = h(x , y , z2) = 0

)}
.

They are “spurious” in the sense that they do not form part of any
true root of all three polynomials. Nevertheless, they are x values
above which the topology changes, so cannot always be discarded.

Note that there will always be a neat factorisation (over Z if that
was the original ring) into “genuine” versus “spurious”.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Alternative Resultant Combinations (Slide 8/18)

Instead of resy(resz(f, g), resz(f, h)) we may calculate:
resy(resz(f, g), resz(g, h))
= 5x8 + 16x7 + 18x6 + 8x5 − 5x4 − 8x3 − 2x2 + 1
=

(
x2 + x + 1

) (
x2 + x − 1

)
︸ ︷︷ ︸

genuine

(
5x4 + 6x3 + x2 − 1

)
︸ ︷︷ ︸

spurious

. (4)

resy(resz(f, h), resz(g, h))
= 2x4 + 4x3 + 2x2 − 2
= 2

(
x2 + x + 1

) (
x2 + x − 1

)
︸ ︷︷ ︸

genuine

. (5)

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Gröbner Basis to Reveal Multivariate Resultant (Slide 9/18)

Consider the Gröbner Basis,

GBplex(f , g , h) =
{

x4 + 2x3 + x2 − 1, y − x , x2 + x + z
}

. (6)

We see that the basis polynomial univariate in x divides all three of
the iterated resultants we computed. In fact, it is the multivariate
resultant res(f, g, h). That will happen in general.

In this example, it happened to be one of the iterated resultants
(5), but that need not happen in general.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Theory
Example

Variable Ordering (Slide 10/18)

Earlier we used z ≻ y ≻ x . If instead we use x ≻ y ≻ z we have:

resy(resx(f, g), resx(f, h)) = (z2 − 1)2, (7)

resy(resx(f, g), resx(g, h)) = (z2 − 1)4, (8)

resy(resx(h, g), resx(f, h)) = (z2 − 1)4, (9)

GBplex(x,y,z)(f , g , h) =
{

z2 − 1, y2 + y + z , x − y
}

. (10)

I.e. no spurious roots were uncovered with this ordering.

CAD variable ordering is known to greatly effect the complexity of
CAD both in practice [dRE22] and theory [BD07]. Is the
introduction of spurious factors in some orderings but not others a
significant contributing factor?

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Outline

1 Iterated vs Multivariate Resultants
Theory
Example

2 Optimisations
Discarding Spurious Factors
Detecting Spurious Factors

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

CAD with Multiple Equational Constraints (Slide 11/18)

McCallum [McC01] optimised CAD for multiple equation
constraints (ECs) i.e. the case when

Φ ≡ f1 = 0 ∧ f2 = 0 ∧ · · · fk = 0 ∧ Φ(fk+1, . . . , fm). (11)

[McC01] proved that we need only take those resultants that
involve one designated EC, say f1 in the first projection. Then at
the next projection res(f1, f2) is another EC and we can proceed
similarly.

For such input we are only interested in the genuine zeros, since
away from these the formula will be uniformly false and so any
further refinement is unnecessary.
Thus any resxn−1(resxn(f1, f2), resxn(f1, fi)) can be replaced by
res(f1, f2, fi) in the second projection, and so on.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Improvements to Complexity (Slide 12/18)

If the fi have degree d in each xi , then an iterated resultant after k
eliminations has degree O

(
(2d)d2k )

(doubly exponential), whereas
res(f1, . . . , fk) has degree O

(
dk

)
(the Bézout bound).

We note that [EBD15] observed that use of k equational
constraints reduces the double exponent of m from n to n − k; the
present observations show that the same reduction applies to the
double exponent of d , at least inasmuch as the nested resultants
are concerned.

Work to be done: Prove the same conclusions would apply to
equational constraints with the Lazard projection [DNSU23]. There
are challenges with “curtains” [Nai21] (regions of nullification).

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Cylindrical Algebraic Coverings (Slide 13/18)

In CAC [ADEK21], each polynomial has (at least one) explicit
reason for being where it is in the computation.

For example, resxn(f1, f2) might be in the computation because of
a specific root α, where it is the case for xn−1 > α (until the next
point) the regions ruled out by f1 and f2 overlap, whereas for
xn−1 < α we need a further reason to rule out regions. The same
might be true of resxn(f1, f3), needed because of a specific root β.
Then resxn−1(resxn(f1, f2), resxn(f1, f3)) tracks where α and β meet.
Hence in this context we are interested only in genuine roots, and
so we could replace the iterated resultant by res(f1, f2, f3).

Work to be done: Work this through precisely with an
implementation of CAC.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Outline

1 Iterated vs Multivariate Resultants
Theory
Example

2 Optimisations
Discarding Spurious Factors
Detecting Spurious Factors

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Detecting Spurious Factors (Slide 14/18)

How to know if a factor is “spurious” or “genuine”. Any alternative
to manually checking for whether they lead to common zeros?

In some cases we can discard factors with based on their degree,
when this breaches the Bézout Bound on the true multivariate
resultant. I.e., if resy(resz(f, g), resz(f, h)) has an irreducible factor
of degree > d3, it must be spurious and can be discarded.

Since it is common for CAD implementation to factor polynomials,
this is a cheap, albeit incomplete, test.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Example of Detecting Spurious Factors (Slide 15/18)

Three 3-variable polynomials created randomly in Maple to have
total degree 5:

f = −34x2z3 − 20y5 + 7x2y2 − 43y3z + 63x + 16z ,

g = 13xz4 − 27z4 − 21xy2 + 30yz − 42x − 81,

h = −65xz4 + 13z5 + 30x3z + 17xy3 + 25yz + 78.

Then resy (resz(f , g), resz(f , h)) factors into a constant times two
irreducible polynomials: one of degree 378 and the other of degree
89. With no further computation we can identify the first as
spurious since its degree is greater than 53 = 125. The second
could be genuine, or be another spurious factor: we check
manually to see it indeed genuine.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Bones of a Detection Algorithm (Slide 16/18)

Work through factors in turn:
if degree is above the bound then discard;
if below then analyse if there is a genuine multiple root above.

If so, mark as genuine and reduce the bound by the degree.
Should the bound be set to zero discard all remaining factors.

Work to be done: Implement and experiment with this.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

More Work to be Done I (Slide 17/18)

We have only looked at the resultants, not the discriminants, and
indeed only at resultants of resultants. Undoubtedly something
similar can be said about e.g. resy(resz(f, g), discz(f)).

A complete solution for resultants of discriminants, discriminants
of resultants and discriminants of discriminant would bring the
double exponent in the degree complexity down entirely.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

More Work to be Done II (Slide 18/18)

In the example iterated resultant (5), the “genuine” part had two
factors, one with no real roots. I.e. Even the “genuine” part may
still be overkill for real geometry.

Can we:
a) detect that a factor has no real components; and
b) use this to further reduce the polynomials? Furthermore,
c) can we make any meaningful statement about the complexity

implications of this?

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

The End

Thanks for Listening
Any Questions?

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Bibliography I

E. Ábrahám, J.H. Davenport, M. England, and G. Kremer.
Deciding the Consistency of Non-Linear Real Arithmetic
Constraints with a Conflict Driven Search Using Cylindrical
Algebraic Coverings.
Journal of Logical and Algebraic Methods in Programming
Article 100633, 119, 2021.
C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Bibliography II

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

James Harold Davenport, Akshar Sajive Nair, Gregory Kumar
Sankaran, and Ali Kemal Uncu.
Lazard-style cad and equational constraints.
In Proceedings of the 2023 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’23, pages
218–226, New York, NY, USA, 2023. Association for
Computing Machinery.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Bibliography III

Tereso del Río and Matthew England.
New heuristic to choose a cylindrical algebraic decomposition
variable ordering motivated by complexity analysis.
In François Boulier, Matthew England, Timur M. Sadykov,
and Evgenii V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing, pages 300–317, Cham, 2022. Springer
International Publishing.

M. England, R. Bradford, and J.H. Davenport.
Improving the Use of Equational Constraints in Cylindrical
Algebraic Decomposition.
In D. Robertz, editor, Proceedings ISSAC 2015, pages
165–172, 2015.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Bibliography IV

D. Jovanović and L. de Moura.
Solving Non-Linear Arithmetic.
In Proceedings IJCAR 2012, pages 339–354, 2012.

S. McCallum.
On Propagation of Equational Constraints in CAD-Based
Quantifier Elimination.
In B. Mourrain, editor, Proceedings ISSAC 2001, pages
223–230, 2001.
McCallum, Scott and Winkler, Franz.
Differential resultants.
ITM Web Conf., 20:01005, 2018.

J.H. Davenport and M. England Iterated Resultants in CAD



Iterated vs Multivariate Resultants
Optimisations

Discarding Spurious Factors
Detecting Spurious Factors

Bibliography V

A.S. Nair.
Exploiting Equational Constraints to Improve the Algorithms
for Computing Cylindrical Algebraic Decompositions.
PhD thesis, University of Bath, 2021.

J.H. Davenport and M. England Iterated Resultants in CAD


	Iterated vs Multivariate Resultants
	Theory
	Example

	Optimisations
	Discarding Spurious Factors
	Detecting Spurious Factors


