Data Augmentation for Mathematical Objects

<u>Tereso del Río¹</u> and Matthew England²

Coventry University

8th SC² International Workshop July 28, 2023 - Tromsø, Norway

¹ Supported by Coventry University. ² Supported by UKRI EPSRC Grant EP/T015748/1, "Pushing Back the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition" (DEWCAD).

<u>Tereso del Río¹</u> and Matthew England²

Data Augmentation for Mathematical Objects

Covent

Outline

- 1 Introduction to CAD
- Variable ordering in CADVariable ordering
- 3 Dataset
 - A glance at the dataset
- 4 Balancing and augmenting
 - Changing a label
 - Balancing
 - Augmenting
 - Comparison

Introduction to CAD

Given a set of polynomials

$$S = \{xy - 1, y^2 - x^3 - x^2\}$$

Introduction to CAD

We may want to know where xy - 1 < 0 and $y^2 - x^3 - x^2 < 0$.

The only implemented general-purpose algorithm that guarantees to answer such questions is CAD, firstly proposed in [Collins(1975)].

• • = • • = •

Pros and cons

• Useful in biology [Röst and Sadeghimanesh(2021)], robotics, proving mathematical inequalities [Gerhold and Kauers(2006)], ...

Daverport proved in [Davenport and Heintz(1988)] that OAD has doubly exponential complexity with respect to the number of variables.

• and that is SCARY!

Pros and cons

• Useful in biology [Röst and Sadeghimanesh(2021)], robotics, proving mathematical inequalities [Gerhold and Kauers(2006)], ...

Daverport proved in [Davenport and Heintz(1988)] that OAD has doubly exponential complexity with respect to the number of variables.

• and that is SCARY!

Pros and cons

- Useful in biology [Röst and Sadeghimanesh(2021)], robotics, proving mathematical inequalities [Gerhold and Kauers(2006)], ...
- Davenport proved in [Davenport and Heintz(1988)] that CAD has doubly exponential complexity with respect to the number of variables.

<u>Tereso del Río¹</u> and Matthew England² Data Augmentation for Mathematical Objects

Pros and cons

- Useful in biology [Röst and Sadeghimanesh(2021)], robotics, proving mathematical inequalities [Gerhold and Kauers(2006)], ...
- Davenport proved in [Davenport and Heintz(1988)] that CAD has doubly exponential complexity with respect to the number of variables.
- and that is SCARY!

Introduction to CAD

Variable ordering in CAD Dataset Balancing and augmenting

A little story

<u>Tereso del Río¹</u> and Matthew England²

Data Augmentation for Mathematical Objects

Variable ordering

Variable ordering

Brown and Davenport [Brown and Davenport(2007)]: Depending on variable ordering, **constant** or **doubly exponential** complexity.

Variable ordering

Choosing the right variable ordering:

• Humans have proposed heuristics for this task: e.g. sotd [Dolzmann et al.(2004)Dolzmann, Seidl, and Sturm]; brown [Brown(2004)] and mods [?]

Variable ordering

Machine Learning models have been trained for this purpose e.g. [2] and [Chen et al.(2020)Chen, Zhu, and Chi]

Variable ordering

Variable ordering

Choosing the right variable ordering:

- Humans have proposed heuristics for this task: e.g. sotd [Dolzmann et al.(2004)Dolzmann, Seidl, and Sturm]; brown [Brown(2004)] and mods [?]
- Machine Learning models have been trained for this purpose e.g. [?] and [Chen et al.(2020)Chen, Zhu, and Chi]

A glance at the dataset

Training models

In [England and Florescu(2019)] multiple models were trained.

Name	Accuracy
brown	0.553
gmods	0.563
KNN	0.555
DT	0.573
SVC	0.549
MLP	0.569

A glance at the dataset

A glance at the dataset

Extracted from QFNRA problems of the SMT-LIB; mainly meti-tarski.

Introduction to CAD Changing a label Variable ordering in CAD Balancing Dataset Augmenting Balancing and augmenting Comparison

Changing a label

If the optimal ordering for $\{x_1x_2^3 + x_2^2x_3^2, x_2x_3^3 - 1\}$ is 0.

The six possible variable orderings

Ordering Name	Ordering
Ordering 0	$x_1 \succ x_2 \succ x_3$
Ordering 1	$x_1 \succ x_3 \succ x_2$
Ordering 2	$x_2 \succ x_1 \succ x_3$
Ordering 3	$x_2 \succ x_3 \succ x_1$
Ordering 4	$x_3 \succ x_1 \succ x_2$
Ordering 5	$x_3 \succ x_2 \succ x_1$

By simply swapping the names of x_1 and x_2 we get an instance with optimal ordering 2: $\{x_2x_1^3 + x_1^2x_3^2, x_1x_3^3 - 1\}$.

Changing a label Balancing Augmenting Comparison

Analogy with arrows for computer vision

Normally, we cannot change the labels on demand but our problem is symmetric.

Arrow pointing right

Arrow pointing up

Changing a label Balancing Augmenting Comparison

Analogy with arrows for computer vision

Normally, we cannot change the labels on demand but our problem is symmetric.

Arrow pointing right

Arrow pointing down

Introduction to CAD	Changing a labe
Variable ordering in CAD	Balancing
Dataset	Augmenting
Balancing and augmenting	Comparison

Balancing the dataset

By randomly permuting variables in an instances we can balance our datasets.

Introduction to CAD Changing a lai Variable ordering in CAD Dataset Balancing Balancing and augmenting Comparison

Problems caused by unbalancedness

Models trained on unbalanced data do not perform well on balanced data.

Testing dataset	Unbalanced	Balanced
KNN-Unbalanced	0.51	0.21
DT-Unbalanced	0.53	0.31
SVC-Unbalanced	0.48	0.23
RF-Unbalanced	0.58	0.35
MLP-Unbalanced	0.51	0.32

Accuracy of models trained on the unbalanced dataset, when tested on the different testing datasets.

• • = • • = •

Introduction to CAD Changing a la Variable ordering in CAD Balancing Dataset Augmenting Balancing and augmenting Comparison

Balancing solves this issue

Testing dataset	Unbalanced	Balanced
KNN-Balanced	0.41	0.36
DT-Balanced	0.43	0.45
SVC-Balanced	0.25	0.3
RF-Balanced	0.49	0.52
MLP-Balanced	0.45	0.43

Accuracy of models trained on the balanced dataset, when tested on the different testing datasets.

Introduction to CAD	Changing a labe
Variable ordering in CAD	Balancing
Dataset	Augmenting
Balancing and augmenting	Comparison

Augmenting the dataset

Including all possible permutations we can augmentate the dataset.

Introduction to CAD	
Variable ordering in CAD	
Dataset	Augmenting
Balancing and augmenting	

Augmenting boosts the results

Testing dataset	Unbalanced	Balanced
KNN-Augmented	0.54	0.55
DT-Augmented	0.54	0.55
SVC-Augmented	0.46	0.48
RF-Augmented	0.62	0.63
MLP-Augmented	0.48	0.5

Accuracy of models trained on the augmented dataset, when tested on the different testing datasets.

Survival plot SVC

<u>Tereso del Río¹</u> and Matthew England² Data Augmentation for Mathematical Objects

Introduction to CAD	Changing a label
Variable ordering in CAD	Balancing
Dataset	Augmenting
Balancing and augmenting	Comparison

Survival plot SVC

<u>Tereso del Río¹</u> and Matthew England² Data Augmentation for Mathematical Objects

Introduction to CAD	
Variable ordering in CAD	
Dataset	Augmenting
Balancing and augmenting	

Comparing accuracies

Training dataset	Normal	Balanced	Augmented
KNN	0.3	0.42	0.55
DT	0.35	0.43	0.54
MLP	0.35	0.45	0.47
SVC	0.23	0.29	0.48
RF	0.46	0.53	0.61

Accuracy of models on the balanced testing dataset, having been trained on the different training datasets.

Introduction to CAD	
Variable ordering in CAD	
Dataset	Augmenting
Balancing and augmenting	

Comparing timings

Training dataset	Normal	Balanced	Augmented
KNN	21603	20927	18850
DT	20352	17299	17404
SVC	25004	23 913	19980
RF	19909	17391	16 301
MLP	21977	20 210	18509

Accuracy of models on the balanced testing dataset, having been trained on the different training datasets.

Introduction to CAD	Changing a label
Variable ordering in CAD	Balancing
Dataset	Augmenting
Balancing and augmenting	Comparison

Comparison with [Hester et al.(2023)Hester, Hitaj, Passmore, Owre, Shanka

- Very similar results.
- I removed loads of repeated examples (around 8000 vs around 1000).
- I used some more features.
- I still have to check if those two make any difference.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

• Extra augmentation methods.

sing regression instead of classification.

sing reinforcement learning (pick one variable at a time).

Encode sets of polynomials as graph and using Graph NN.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

- Extra augmentation methods.
- Using regression instead of classification.

sing reinforcement learning (pick one variable at a time).

Encode sets of polynomials as graph and using Graph NN.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

- Extra augmentation methods.
- Using regression instead of classification.
- Using reinforcement learning (pick one variable at a time).

Licody sets of polynomials as graph and using Graph NN.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

- Extra augmentation methods.
- Using regression instead of classification.
- Using reinforcement learning (pick one variable at a time).
- Encode sets of polynomials as graph and using Graph NN.

Comparison

Comparing with regression

Classification		
Name	Time	
KNN	18850	
DT	17404	
SVC	19980	
RF	16301	
MLP	18509	

Regression		
Name	Time	
DTR	17206	
SVR	26100	
RFR	11391	
KNNR	15362	
MLPR	25219	

Timings for different paradigms

Lesson to take from this talk

Representations of mathematical objects often have symmetries and those can be exploited to augmentate the number of representations that we have of a given object. Very rarely we can give a mathematical object to a machine learning model (variable length), and augmentation is a tool to give as many views of the same object as possible.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Bibliography I

Christopher W Brown.

Companion to the Tutorial Cylindrical Algebraic Decomposition.

In International Symposium on Symbolic and Algebraic Computation - ISSAC, 2004.

Christopher W. Brown and James H. Davenport. The complexity of quantifier elimination and cylindrical algebraic decomposition.

Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, pages 54–60, 2007. doi: 10.1145/1277548.1277557. Publisher: ACM Press ISBN: 9781595937438.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Bibliography II

Changbo Chen, Zhangpeng Zhu, and Haoyu Chi. Variable Ordering Selection for Cylindrical Algebraic Decomposition with Artificial Neural Networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 12097 LNCS, pages 281–291. Springer, 2020. ISBN 978-3-030-52199-8. doi: 10.1007/978-3-030-52200-1_28. ISSN: 16113349.

Balancing and augmenting	Comparison
Dataset	
Variable ordering in CAD	
Introduction to CAD	

Bibliography III

George E. Collins.

Quantifier elimination for real closed fields by cylindrical algebraic decomposition.

Lecture Notes in Computer Science, 33(Automata Theory and Formal Languages):134–183, 1975. ISSN 16113349.

doi: 10.1007/3-540-07407-4_17.

Publisher: Springer Verlag ISBN: 9783540074076.

Introduction to CAD	Changing a label
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Bibliography IV

James H. Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. Journal of Symbolic Computation, 5(1-2):29–35, February 1988. ISSN 07477171. doi: 10.1016/S0747-7171(88)80004-X. Publisher: Academic Press. Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Efficient projection orders for CAD. In Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation - ISSAC, pages 111–118, New York, New York, USA, 2004. ACM Press. ISBN 1-58113-827-X. doi: 10.1145/1005285.1005303.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Bibliography V

Matthew England and Dorian Florescu. Comparing Machine Learning Models to Choose the Variable Ordering for Cylindrical Algebraic Decomposition. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics, volume 11617 of Lecture Notes in Computer Science, pages 93–108. Springer International Publishing, Cham. 2019. ISBN 978-3-030-23249-8 978-3-030-23250-4. doi: 10.1007/978-3-030-23250-4 7. URL http: //link.springer.com/10.1007/978-3-030-23250-4_7.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Bibliography VI

Stefan Gerhold and Manuel Kauers. A computer proof of Turán's inequality. Journal of Inequalities in Pure and Applied Mathematics. 2006.John Hester, Briland Hitaj, Grant Passmore, Sam Owre, Natarajan Shankar, and Eric Yeh. Revisiting Variable Ordering for Real Quantifier Elimination using Machine Learning. arXiv preprint, 2023. doi: 10.48550/ARXIV.2302.14038. URL https://arxiv.org/abs/2302.14038. Publisher: arXiv Version Number: 1.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Bibliography VII

 Gergely Röst and Amirhosein Sadeghimanesh.
Exotic Bifurcations in Three Connected Populations with Allee Effect.
International Journal of Bifurcation and Chaos, 31(13), 2021.
ISSN 02181274.
doi: 10.1142/S0218127421502023.
Publisher: World Scientific Publishing Company.

Introduction to CAD	
Variable ordering in CAD	
Dataset	
Balancing and augmenting	Comparison

Apendix

<u>Tereso del Río¹</u> and Matthew England² Data Augmentation for Mathematical Objects

▶ < 토▶ < 토▶