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Introduction to CAD

Given a set of polynomials

S = {xy − 1, y2 − x3 − x2}
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Introduction to CAD

We may want to know where xy − 1 < 0 and y2 − x3 − x2 < 0.

The only implemented general-purpose algorithm that
guarantees to answer such questions is CAD, firstly proposed in
[Collins(1975)].
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Pros and cons

Useful in biology [Röst and Sadeghimanesh(2021)],
robotics, proving mathematical inequalities
[Gerhold and Kauers(2006)], ...
Davenport proved in [Davenport and Heintz(1988)] that
CAD has doubly exponential complexity with respect to
the number of variables.
and that is SCARY!
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Variable ordering

Variable ordering

Brown and Davenport [Brown and Davenport(2007)]:
Depending on variable ordering, constant or doubly
exponential complexity.
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Variable ordering

Choosing the right variable ordering:
Humans have proposed heuristics for this task: e.g. sotd
[Dolzmann et al.(2004)Dolzmann, Seidl, and Sturm]; brown
[Brown(2004)] and mods [?]
Machine Learning models have been trained for this
purpose e.g. [?] and [Chen et al.(2020)Chen, Zhu, and Chi]
.
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A glance at the dataset

Training models

In [England and Florescu(2019)] multiple models were trained.

Name Accuracy
brown 0.553
gmods 0.563
KNN 0.555
DT 0.573
SVC 0.549
MLP 0.569

Tereso del Río1 and Matthew England2 Data Augmentation for Mathematical Objects



Introduction to CAD
Variable ordering in CAD

Dataset
Balancing and augmenting

A glance at the dataset

A glance at the dataset

Extracted from QFNRA problems of the SMT-LIB; mainly
meti-tarski.
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Changing a label

If the optimal ordering for {x1x32 + x22x
2
3, x2x

3
3 − 1} is 0.

The six possible variable orderings

Ordering Name Ordering
Ordering 0 x1 ≻ x2 ≻ x3
Ordering 1 x1 ≻ x3 ≻ x2
Ordering 2 x2 ≻ x1 ≻ x3
Ordering 3 x2 ≻ x3 ≻ x1
Ordering 4 x3 ≻ x1 ≻ x2
Ordering 5 x3 ≻ x2 ≻ x1

By simply swapping the names of x1 and x2 we get an instance
with optimal ordering 2: {x2x31 + x21x

2
3, x1x

3
3 − 1}.
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Analogy with arrows for computer vision

Normally, we cannot change the labels on demand but our
problem is symmetric.

Arrow pointing right Arrow pointing up
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Analogy with arrows for computer vision

Normally, we cannot change the labels on demand but our
problem is symmetric.

Arrow pointing right Arrow pointing down
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Balancing the dataset

By randomly permuting variables in an instances we can
balance our datasets.
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Problems caused by unbalancedness

Models trained on unbalanced data do not perform well on
balanced data.

Testing dataset Unbalanced Balanced
KNN-Unbalanced 0.51 0.21
DT-Unbalanced 0.53 0.31
SVC-Unbalanced 0.48 0.23
RF-Unbalanced 0.58 0.35
MLP-Unbalanced 0.51 0.32

Accuracy of models trained on the unbalanced dataset, when tested
on the different testing datasets.
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Balancing solves this issue

Testing dataset Unbalanced Balanced
KNN-Balanced 0.41 0.36
DT-Balanced 0.43 0.45
SVC-Balanced 0.25 0.3
RF-Balanced 0.49 0.52
MLP-Balanced 0.45 0.43

Accuracy of models trained on the balanced dataset, when tested on
the different testing datasets.
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Augmenting the dataset

Including all possible permutations we can augmentate the
dataset.
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Augmenting boosts the results

Testing dataset Unbalanced Balanced
KNN-Augmented 0.54 0.55
DT-Augmented 0.54 0.55
SVC-Augmented 0.46 0.48
RF-Augmented 0.62 0.63
MLP-Augmented 0.48 0.5

Accuracy of models trained on the augmented dataset, when tested on
the different testing datasets.
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Survival plot SVC
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Comparing accuracies

Training dataset Normal Balanced Augmented
KNN 0.3 0.42 0.55
DT 0.35 0.43 0.54
MLP 0.35 0.45 0.47
SVC 0.23 0.29 0.48
RF 0.46 0.53 0.61

Accuracy of models on the balanced testing dataset, having been
trained on the different training datasets.
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Comparing timings

Training dataset Normal Balanced Augmented
KNN 21 603 20 927 18 850

DT 20 352 17 299 17 404

SVC 25 004 23 913 19 980

RF 19 909 17 391 16 301

MLP 21 977 20 210 18 509

Accuracy of models on the balanced testing dataset, having been
trained on the different training datasets.
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Comparison with
[Hester et al.(2023)Hester, Hitaj, Passmore, Owre, Shankar, and Yeh]

Very similar results.
I removed loads of repeated examples (around 8000 vs
around 1000).
I used some more features.
I still have to check if those two make any difference.
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Future work

Extra augmentation methods.
Using regression instead of classification.
Using reinforcement learning (pick one variable at a time).
Encode sets of polynomials as graph and using Graph NN.
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Comparing with regression

Classification
Name Time
KNN 18 850

DT 17 404

SVC 19 980

RF 16 301

MLP 18 509

Regression
Name Time
DTR 17 206

SVR 26 100

RFR 11 391

KNNR 15 362

MLPR 25 219

Timings for different paradigms
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Lesson to take from this talk

Representations of mathematical objects often have symmetries
and those can be exploited to augmentate the number of
representations that we have of a given object.
Very rarely we can give a mathematical object to a machine
learning model (variable length), and augmentation is a tool to
give as many views of the same object as possible.
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