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Personal Note (Slide 1/18)

First met JHD interviewing for a PDRA
position with him in late 2011.

Worked with JHD in Bath for three years:
2012−2015.

Continued to collaborate after move to
Coventry in 2015, e.g. EU SC-Square Project
and now the EPSRC DEWCAD Project.

Co-authored at least one paper with James
every year since 2012! Always a pleasure.

Happy Birthday James!
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Key Reference: L. Pickering, T. Del Rio Almajano, M. England and K. Cohen.
Explainable AI Insights for Symbolic Computation: A case study on selecting
the variable ordering for cylindrical algebraic decomposition. Submitted, 2023.
Preprint: https://arxiv.org/abs/2304.12154
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Symbolic Computation VS Machine Learning (Slide 2/18)

Symbolic Computation refers to algorithms and software for
manipulating exact mathematical expressions and objects.

Machine Learning (ML) can use statistics and big data to learn
how to perform tasks that have not been explicitly programmed.

(Q) Can ML replace symbolic computation?

There is a growing body of research on the use of ML in place of
expensive symbolic computation. E.g. for symbolic integration and
the solution of differential equations [Lample and Charton, 2020].

There are over-fitting issues: where the ML does very well on the
data used to train it but poorly on different data. It is not always
obvious which data is similar to the training data.

For [Lample and Charton, 2020] it is cheap to symbolically check
the correctness; not so for most symbolic computation.
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Symbolic Computation WITH Machine Learning (Slide 3/18)

ML can only offer probabilistic guidance, but symbolic
computation prizes exact results. 99% accuracy is great for image
recognition but would not be acceptable for a mathematical proof.

However: ML can be applied to symbolic computation and still
ensure exact results; by having it guide existing algorithms rather
than replace them entirely.

Computer Algebra algorithms will often come with choices that
need to be made but which do not effect the mathematical
correctness of the final result; but do effect the resources required
to find that result, and how the result is presented.

Such choices are often either left to the user, hard coded by the
developer, or made based on a simple heuristic. ML can offer a
superior choice.
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ML to Optimise Computer Algebra Examples (Slide 4/18)

Huang et al. [2014] was the first use of ML for computer
algebra: used to select the CAD variable ordering (our topic).
Kuipers et al. [2015] used a Monte-Carlo tree search to find
the representation of polynomials that are most efficient to
evaluate numerically.
Simpson et al. [2016] used ML to choose which algorithm to
compute the resultant with for a given problem instance.
Brown and Daves [2020] used a neural network to select the
order of polynomial constraints to process in their solver.
Peifer et al. [2020] applied reinforcement learning to select
which S-Pair to process next when building a Gröbner Basis.

Fuller survey in [Pickering et al., 2023].
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This is INTERESTING Machine Learning (Slide 5/18)

So ML has great potential for Symbolic Computation. But note
this is also a particularly challenging / interesting ML domain:

No a priori limit on the input space.
Supervised learning hard: because labelling dataset needs lots
of expensive symbolic computation.
Unsupervised learning is hard: because it is unclear if a
particular outcome is good or bad without seeing the
competition!
What constitutes a meaningful and representative data set?
Insufficient quantities of real world data for deep learning.
How to perform synthetic data generation to allow for good
generalisability on problems of interest?
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Case Study: Variable Ordering for CAD (Slide 6/18)

Cylindrical Algebraic Decomposition (CAD)
[Collins, 1975] is a key tool for semi-algebraic
sets / formulae in non-linear real arithmetic.
Requires a variable ordering, whose choice
affects computation time, even complexity
Brown and Davenport [2007].

Some human-designed heuristics for the
choice use only simple metrics upon the input
[Brown, 2004], [del Río and England, 2022];
while others make use of more expensive
algebraic information [Dolzmann et al.,
2004], [Bradford et al., 2013], [England
et al., 2014], [Wilson et al., 2014].
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ML for CAD Variable Ordering I (Slide 7/18)

Huang et al. [2014] was the first use of
ML for computer algebra: a support
vector machine was trained to choose
which of our three human-made
heuristics to follow when selecting the
CAD variable ordering.

We observed subsets of problems on
which each heuristic was dominant. The
ML meta-heuristic was better than
those of any one human-made heuristic.

We later applied this methodology to other CAD algorithm
choices, e.g Gröbner Basis preconditioning Huang et al. [2019].
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ML for CAD Variable Ordering II (Slide 8/18)

Work continued with more involved ML tools for the problem:

Variety of classification models [England and
Florescu, 2019];
Automated feature generation technique
[Florescu and England, 2019];
Partial training based on runtime instead of
accuracy [Florescu and England, 2020a];
An open source software pipeline [Florescu and
England, 2020b].

Also in this period Chen et al. [2020] experimented with a
combination of a greedy heuristic to identify candidate solutions
and neural networks to choose between them.
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QFNRA Dataset Lessons in del Rio and England [2023]
(Slide 9/18)

Work has focussed on the QFNRA benchmark set in the SMT-LIB
(the most substantial set of problems admissible to CAD). But:

Data is unbalanced with respect to variable ordering. This will
lead to overfitting to the most prevalent ordering.

Addressed by permuting variable labels. Additional data generation
this way (augmentation) gives genuine learning that makes up for
the unfair advantage lost by balancing.

The benchmarks contain many almost identical problems.
Lead to data leakage between training and testing sets.

Addressed by merging problems instances who have the same CAD
tree structure for all orderings. This reduces the dataset to a sixth
but with the same learning achieved.
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Peifer, Stillman, and Halpern-Leistner (Slide 10/18)

Peifer et al. [2020] applied ML to choose the order in
which to process S-pairs in Buchberger’s algorithm
for a Gröbner Basis. Their model outperformed
human-made heuristics for the choice.

A human analysis of their model revealed preferences
for pairs whose S-polynomials are low degree and
those which are monomials. Basing the decision on
the S-polynomials rather than S-pairs was novel.

Hand made heuristics based on these insights
outperformed the prior human-made heuristics (but
not the full ML model).
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Beyond Efficiency Gains (Slide 11/18)

The work of Peifer et al. [2020] suggests that ML may be able to
offer Computer Algebra something beyond efficiency gains: new
ideas to explore and human-level heuristics.

(Working) Definition: A “human-level” strategy for making a
heuristic decision is one that may be described clearly in natural
language in a quantity of text of the same order or magnitude as
existing heuristics created by humans.

Why prefer human-level heuristics?
Easier to understand.
Easier to include in an implementation.
Less risk of over-fitting to a dataset.

We suggest the creation of human-level heuristics through the use
of XAI techniques.
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What is XAI? (Slide 12/18)

XAI (eXplainable AI) is an emerging domain. It encompasses both
AI methods that are inherently interpretable to human experts, and
tools to analyse less interpretable AI to produce explanations for
their behaviour.

Note that there is a
perceived trade-off
between ML accuracy and
interpretability.

However, this trade-off has
been shown to differ
depending on the problem
domain and user!
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Recent Work on XAI for CAD Variable Ordering (Slide 13/18)

Joint with Lynn Pickering and Tereso del Rio.

We worked with the software pipeline of
Florescu and England [2020a]. This represents
each CAD instance as a vector of floating
points defined by (simple) features of the input
polynomials

We used the popular XAI tool, SHAP
[Lundberg and Lee, 2017], which identifies the
relative influence of each feature to a model’s
prediction. Based on Shapley Values in game
theory where we play a game with subsets of
players to identify the contribution of each:
here players are ML features.
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SHAP Waterfall Plot Example (Slide 14/18)

Produced to explain one model’s prediction on one instance for a
single variable ordering.
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Our Methodology (Slide 15/18)

We ran an experiment with the 3-variable problems from the
QFNRA benchmarks in the SMT-LIB (with the balancing and
merging discussed earlier).

Ran SHAP for each four ML models (KNN, DT, SVM, MLP).
Combined scores across instances.
Merged features of same metric on different variables.
Applied a Borda Count vote to combine the feature rankings
of the four models into a single ranking.
Formed human-level heuristics from triples of the best ranked
features.

The triples query one feature, breaking ties with the next.
They are applied greedily: pick first variable based on input,
then project one dimension and pick second variable based on
that projection, etc.
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Results − Final Feature Ranking (Slide 16/18)

XAI identified as top the
feature corresponding to
current state-of-the-art in
[del Río and England,
2022].

Experimented with all 120
ordered triples you can
form by taking three from
the top six in the ranking.
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Results − Heuristics (Slide 17/18)
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Results Analysis (Slide 18/18)

Both T1 and T2 (the best performing of the 120 triples) could
be seen as the new state-of-the-art human level heuristic for
the problem (which depends on preferred evaluation metric).
Either may be simply encoded into any CAD implementation
without recourse to AI software.
The features XAI ranked most important do well on their own
too: one is the key metric in the prior-state-of-the-art but the
other had not been studied before.
T1 was in fact formed from the the top three XAI ranked
features in that order.

Conclusion: XAI may be used to produce human-level heuristics
for computer algebra.
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Contact Details

Contact Details
Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/

Thanks for Listening
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