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Overview (Slide 1/48)

Summary: the talk will describe the Real Quantifier Elimination
Problem and the Cylindrical Algebraic Decomposition method to
tackle it. We will introduce what these things are, how machine
learning may be used to optimise them, and how explainable AI
may be used to gain ideas to improve software without embedding
machine learning models.

Key message: potential for fruitful interplay between
computational mathematics and machine learning.

Joint work with: Rashid Barket, James Bridge, James Davenport,
Tereso del Río, Forian Florescu, Zongyang Huang, Laurence
Paulson, and Lynn Pickering.
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Real QE (Slide 2/48)

Real Quantifier Elimination (Real QE)
Given: A quantified formulae (in prenex normal form) whose
atoms are (integral) polynomial constraints;
Produce: a quantifier free formula logically equivalent over R.

Fully quantified examples:

In: ∃x , x2 + 3x + 1 > 0
Out: True e.g. when x = 0

In: ∀x , x2 + 3x + 1 > 0
Out: False e.g. when x = −1

In: ∀x , x2 + 1 > 0
Out: True

Partially quantified example:

In: ∀x , x2 + bx + 1 > 0
Out: ???

The answer depends on the
unquantified variable, b.
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Partially quantified Tarski formulae example (Slide 3/48)

Consider ∀x , x2 + bx + 1 > 0.
When b = 0 and b = 3:

∀x , x2 + 1 > 0 is True,

∀x , x2 + 3x + 1 > 0 is False.

So in general the answer
depends on b.

Input: ∀x , x2 + bx + 1 > 0
Output: (−2 < b) ∧ (b < 2)

The technology we look at
today can answer such
questions automatically.
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Numeric vs. Symbolic solution? (Slide 4/48)

The solution in the previous slide was essentially numeric: try what
happens for many different values and interpolate a solution.

The alternative is to use Symbolic Computation: algorithms and
data-structures for manipulating exact mathematical expressions
and objects. Traditionally implemented in Computer Algebra
Systems (e.g. Macaulay2, Maple, Mathematica, Sage).

Advantages of Symbolic Computation:
Can solve numerically ill-conditioned problems.
Provide guarantees for safety critical systems.
Provide fundamental insight into the system.

Disadvantage of Symbolic Computation: much more expensive!
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Cylindrical Algebraic Decomposition (Slide 5/48)

A Cylindrical Algebraic Decomposition (CAD) is:
a decomposition of Rn into a set of cells Ci
(i.e.

⋃
i Ci = Rn and Ci ∩ Cj = ∅ if i ̸= j) such that:

cells are semi-algebraic meaning they may be described by a
finite sequence of polynomial constraints;
cells are cylindrical meaning the projection of any two onto a
lower coordinate space in the variable ordering are identical or
disjoint (i.e. the cells in Rm stack up in cylinders over cells
from CAD in Rm−1).

G.E. Collins.
Quantifier elimination for real closed fields by cylindrical
algebraic decomposition.
In Proc. 2nd GI Conf. Automata Theory and Formal
Languages, pp. 134−183. Springer-Verlag, 1975.
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CAD Invariance Property (Slide 6/48)

CAD may also refer to an algorithm that produces the CAD object.

The traditional CAD algorithm introduced by Collins in the 1970s
takes a set of input polynomials and produces a CAD such that
each polynomial has constant sign in each cell: this additional
property is called sign-invariance.
Such a CAD allows us to uncover properties of polynomials over
infinite space by examining finite set of sample points.

Most applications (e.g. QE) actually provide as input a logical
formulae built from polynomial constraints and require as output a
truth-invariant CAD: one such that each formula has constant
truth value in each cell.
Such a CAD allows us to find solution sets from the descriptions of
true cells: semi-algebraic; easy to visualise and check membership.
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Example: Circle − visualisation (Slide 7/48)

Cell 1: x < −1, y free
Cell 2: x = −1, y < 0
Cell 3: x = −1, y = 0
Cell 4: x = −1, y > 0
Cell 5: −1 < x < 1,

y 2 + x2 − 1 > 0, y < 0
Cell 6: −1 < x < 1,

y 2 + x2 − 1 = 0, y < 0
Cell 7: −1 < x < 1,

y 2 + x2 − 1 < 0
Cell 8: −1 < x < 1,

y 2 + x2 − 1 = 0, y > 0
Cell 9: −1 < x < 1,

y 2 + x2 − 1 > 0, y > 0
Cell 10: x = 1, y < 0
Cell 11: x = 1, y = 0
Cell 12: x = 1, y > 0
Cell 13: x > 1, y free
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How to build a CAD? (Slide 8/48)

The usual approach is to calculate projection polynomials whose
roots indicate changes in the behaviour of the input set;
decompose with respect to these and then lift back working at a
sample point. Sound if the projection provides delineability.
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QE via CAD Example (Slide 9/48)

How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

b < −2 ∨ b = −2
∨b = 2 ∨ b > 2
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How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

=⇒
b ≤ −2 ∨ b ≥ 2
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QE via CAD in General (Slide 10/48)

In general we can perform Real QE on a decomposition as follows.
Eliminate existential quantifiers by projecting the true cells,
as in the previous example.
Eliminate universal quantifiers by using the relation

∀xP(x) = ¬∃x¬P(x)

and then proceeding with existential QE.
Recall our original example was ∀x , x2 + bx + 1 > 0. The above
leads us to study ∃x , x2 + bx + 1 ≤ 0 which from the previous slide
we know has solution b ≤ −2 ∨ b ≥ +2. The solution to our
universally quantified problem is then the negation of this:
−2 < b ∧ b < +2 (as we found numerically earlier).
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Cylindricity Property (Slide 11/48)

Decompositions allow us to understand infinite space with a finite
number of samples and (semi-) algebraic cells allows us to
construct solution formulae easily. But why cylindricity?

The Real QE solution process requires us to project cells (and
combine those projections) and to calculate the complement of
cells: both of these things are trivial for cells arranged cylindrically.

Cylindricity means we can
think of CAD as a tree
branching by variable.

M. England Real QE and ML



The Real QE Problem
Optimising CAD via Machine Learning

Applications (time permitting)

Quantifier Elimination
Real QE via CAD
Alternatives to Traditional CAD

Warning: CAD Complexity (Slide 12/48)

By the end of projection you have doubly exponentially many
polynomials of doubly exponential degree (in the number of
projections, i.e. variables). Hence also the number of real roots,
cells and time to compute them grows doubly exponentially!

C. Brown and J.H. Davenport.
The complexity of quantifier elimination and cylindrical
algebraic decomposition.
In Proc. ISSAC ’07, pages 54–60. ACM, 2007.

Thus in practice applications are only realistic for 4 variables,
unless specific optimisations are utilised:

223 = 256 224 = 65, 536 225 = 4, 294, 967, 296
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The Doubly Exponential Wall (Slide 13/48)

Exponential Growth Doubly Exponential Growth
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Real QE Applications (Slide 14/48)

QE can solve problems throughout engineering & science. E.g.
derivation of optimal numerical schemes.
artificial intelligence to pass university entrance exam.
automated theorem proving.
automated loop parellisation.
structural design (minimising the weight of trusses).

...
There is no lack of potential applications: the problem is scaling
up in the face of high complexity!
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QE Applications References

M. Erascu and H. Hong.
Real quantifier elimination for the synthesis of optimal numerical algorithms
(Case study: Square root computation).
Journal of Symbolic Computation, 75:110–126, 2016.

N.H. Arai, T. Matsuzaki, H. Iwane, and H. Anai.
Mathematics by machine.
In Proc. ISSAC ’14, pages 1–8. ACM, 2014.

L.C. Paulson.
Metitarski: Past and future.
In Proc ITP ’12, pages 1–10. Springer, 2012.

A. Grosslinger, M. Griebl, and C. Lengauer.
Quantifier elimination in automatic loop parallelization.
Journal of Symbolic Computation, 41(11):1206–1221, 2006.

A.E. Charalampakis and I. Chatzigiannelis.
Analytical solutions for the minimum weight design of trusses by cylindrical
algebraic decomposition.
Archive of Applied Mechanics, 88(1):39–49, 2018.
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QE via CAD Implementations (Slide 15/48)

Both of the big proprietary Computer Algebra Systems have QE
implementations: Mathematica (the Resolve command) and
Maple (RegularChains:-SemiAlgebraicSetTools;
QuantifierElimination:-CylindricalAlgebraicDecompose;
and RootFinding:-Parametric:-CellDecomposition).
The specialist computer algebra system Qepcad-B is dedicated to
QE via CAD and is available for free. It can be used via an
intelligent interface Tarski, is available as a sub-package of
Sage, and can now even run in your browser!

Z. Kovács, C.W. Brown, T. Recio, and R. Vajda
A web version of Tarski, a system for computing with Tarski formulas and
semialgebraic sets.
In Proc. SYNASC 2022, pages 59–62, IEEE, 2022.
https://doi.org/10.1109/SYNASC57785.2022.00019
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Alternatives to CAD for QE (Slide 16/48)

There exists algorithms to achieve Real QE other than via CAD:
Virtual Term Substitution: more efficient but degree
limitations. Implementations in Mathematica and
Redlog.
QE via Comprehensive Gröbner Bases: more efficient,
especially if there are many equations. Implementation in
SyNnRAC package for Maple.
Family of algorithms for Real QE with complexity doubly
exponential in the number of quantifier eliminations. No
implementations and analysis suggests that the crossover
point where the asymptomatic growth becomes relevant is to
far away for practical use at the moment.
Variety of specialist Real QE algorithms for input of certain
shape.
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Alternatives to CAD for QE References
T. Sturm.
Thirty years of virtual substitution: Foundations, techniques, applications.
In Proc. ISSAC 2018, pages 11–16, ACM, 2018.

R. Fukasaku, H. Iwane, and Y. Sato.
Real quantifier elimination by computation of comprehensive Gröbner
systems.
In Proc. ISSAC ’15, pages 173–180. ACM, 2015.

J. Renegar.
Recent progress on the complexity of the decision problem for the reals.
In B.F. Caviness and J.R. Johnson, editors, Quantifier Elimination and
Cylindrical Algebraic Decomposition, pages 220–241. Springer-Verlag,
1998.

H.P. Le and M. Safey El Din.
Faster one block quantifier elimination for regular polynomial systems of
equations.
In Proc. ISSAC ’21, pages 265–272. ACM, 2021.
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Alternatives to Traditional CAD Computation I (Slide 17/48)

There are now various alternative computational schemes for CAD:
1 CAD adapted for SMT: CAD as a theory solver in the

CDCL(T) paradigm for problems where all variables are
existentially quantified.
The logic space is searched efficiently via a SAT-solver with
CAD used to analyse whether subsets of constraints can be
satisfied together.
Open source implementations exist in the SMT-solvers,
SMT-RAT, Yices2, Z3 and cvc5.

G. Kremer and E. Ábrahám.
Fully incremental cylindrical algebraic decomposition.
J. of Symbolic Computation, 100, pages 11–37. Elsevier, 2020.
https://doi.org/10.1016/j.jsc.2019.07.018
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Alternatives to Traditional CAD Computation II (Slide 18/48)

2 CAD theory redesigned for SMT: the theorems that
underpin CAD reused to validate search-based algorithms that
generalise bad guesses to CAD-cells.

D. Jovanovic and L. de Moura
Solving Non-linear Arithmetic
Proc. IJCAR 2012, LNCS 7364, pp. 339–354.
https://doi.org/10.1007/978-3-642-31365-3_27

E. Ábrahám, J.H. Davenport, M. England and G. Kremer.
Deciding the consistency of non-linear real arithmetic constraints with a
conflict driven search using cylindrical algebraic coverings.
JLAMP 119, pages 2352-2208. Elsevier, 2021.
https://doi.org/10.1016/j.jlamp.2020.100633
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Alternatives to Traditional CAD Computation III (Slide 19/48)

3 SMT inspired CAD algorithms for QE: Generalisations of
the new SMT-based algorithms to tackle the full Real QE
problem.

C. W. Brown
Open Non-uniform Cylindrical Algebraic Decompositions
Proc. ISSAC 2015, pp. 85–92. ACM, 2015
https://doi.org/10.1145/2755996.2756654

G. Kremer and J. Nalbach.
Cylindrical Algebraic Coverings for Quantifiers.
Proc. SC2 2022, CEUR-WS 3458, pp. 1–9, 2023.
https://ceur-ws.org/Vol-3458
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Alternatives to Traditional CAD Computation IV (Slide 20/48)

4 CAD via Regular Chains: First performs a decomposition in
Cn using regular chains (triangular sets) theory and then
refines this to a decomposition of Rn.

C. Chen and M. Moreno Maza and B. Xia and L. Yang.
Computing cylindrical algebraic decomposition via triangular
decomposition.
Proc. ISSAC 2009, pp. 95–102. ACM, 2009.
https://doi.org/10.1145/1576702.1576718
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Alternatives to Traditional CAD Computation V (Slide 21/48)

5 Geometric CAD: A new view of CAD proposed made using
Geometric Fiber Classification that suggests a computation
scheme using Gröbner Bases in place of iterated resultants.

Rizeng Chen.
Geometric Fiber Classification of Morphisms and a Geometric Approach to
Cylindrical Algebraic Decomposition.
Preprint, arXiv:2311.10515 (Dec 2023).
https://doi.org/10.48550/arXiv.2311.10515
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Optimising CAD (Slide 22/48)

All of the alternative CAD computation schemes above still have
doubly exponential complexity in the worst case.
They also all have a sensitivity to the variable ordering which:

Determines the meaning of cylindricity in the definition;
Determines the order of operations in the algorithm.

It is well observed that this choice can dramatically effect the
efficiency or even tractability of CAD, but there does not exist any
theoretical method to make the choice − it is commonly decided
by heuristics. This is one key area in which a CAD implementation
may be optimised.

We will consider whether this can be achieved via machine learning.
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Machine Learning Mathematics (Slide 23/48)

Machine Learning (ML) uses statistics upon data to learn how to
perform tasks that have not been explicitly programmed. ML
technology is behind recent Artificial Intelligence (AI) applications.
It is increasingly used in industry and academia.
(Q) How can ML assist mathematicians?
There have been a variety of papers suggesting that ML can guide
pure mathematicians to potential conjectures.

Davies, Alex and Veličković, Petar and Buesing, Lars and Blackwell, Sam
and Zheng, Daniel and Tomašev, Nenad and Tanburn, Richard and
Battaglia, Peter and Blundell, Charles and Juhász, András and Lackenby,
Marc and Williamson, Geordie and Hassabis, Demis and Kohli, Pushmeet
Advancing mathematics by guiding human intuition with AI.
Nature, 600, pp. 70−−74.
https://doi.org/10.1038/s41586-021-04086-x
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Machine Learning Matrix Multiplication (Slide 24/48)

Reinforcement learning found an improvement on Strassen’s
algorithm to multiply matrices:

A. Fawzi and M. Balog and A. Huang and T. Hubert and B.
Romera-Paredes and M. Barekatain and A. Novikov and F.J.R. Ruiz and J.
Schrittwieser and G. Swirszcz and D. Silver and D. Hassabis and P. Kohli.
Discovering faster matrix multiplication algorithms with reinforcement
learning.
Nature, 610, pp. 47−−53, 2022.
https://doi.org/10.1038/s41586-022-05172-4

That solution seeded a new random walk based algorithm which
found an even better one!

Manuel Kauers and Jakob Moosbauer.
Flip Graphs for Matrix Multiplication.
Proc. ISSAC 2023, pp. 381 − −388. ACM, 2023.
https://doi.org/10.1145/3597066.3597120
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Machine Learning to make Algorithms (Slide 25/48)

Romera-Paredes, B. and Barekatain, M. and Novikov, A. and Balog, M.
and Kumar, M.P. and Dupont, E. and Ruiz, F.J.R. and Ellenberg, J.S. and
Wang, P. and Fawzi, O. and Kohli, P. and Fawzi, A.
Mathematical discoveries from program search with large language
models.
Nature, 625, pp. 468−−475, 2023.
https://doi.org/10.1038/s41586-023-06924-6

Starts with a database of heuristic methods for the problems and
evolves them by feeding two at a time as a prompt to an LLM
(Codey) which is asked to merge them; with the outputs evaluated
for fitness and the best added into the database.

Does not train the LLM themselves! The LLM is simply the
merger tool. They produce programs that describe how to solve a
problem, rather than the problem solution itself.
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Symbolic Computation vs Machine Learning (Slide 26/48)

(Q) So can ML replace symbolic computation?
There is a growing body of research on the use of ML in place of
expensive symbolic computation. E.g. for integration and the
solution of differential equations.

G. Lample and D. Charton
Deep Learning for Symbolic Mathematics.
Proc. ICLR 2020.
https://doi.org/10.48550/arXiv.1912.01412

These tasks are well-suited because it is cheap to symbolically
check the correctness of the answer! However, this is not the case
for most symbolic computation.
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ML for Symbolic Algorithm Selection (Slide 27/48)

The types of integrals dealt with in that paper were very simple.
The integrator in a Computer Algebra System like Maple can
integrate far more general functions but does so using a wide
variety of different algorithms.
(Q) How to select the right algorithm to use for an input?

Coventry University PhD student Rashid Barket is sponsored by
Maplesoft to build an ML-based algorithm selector.
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Symbolic Computation WITH Machine Learning (Slide 28/48)

ML can only offer probabilistic guidance, but symbolic
computation prizes exact results. 99% accuracy is great for image
recognition but would not be acceptable for a mathematical proof.

However, ML can be applied to symbolic computation and still
ensure exact results; by having it select or otherwise guide existing
algorithms rather than replace them entirely.

Symbolic Computation algorithms often come with choices that
need to be made, which do not effect the mathematical correctness
of the final result, but which do effect the resources required to
find that result (and often how the result is presented).

Such choices are often either left to the user, hard coded by the
developer, or made based on a simple heuristic. ML may be able to
offer a superior choice.
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This is INTERESTING Machine Learning (Slide 29/48)

Summary: ML should be of interest to those developing
mathematical algorithms.
But also, ML researchers should also be interested in this
application. It is a particularly challenging (interesting) domain:

No a priori limit on the input space.
Supervised learning hard: because labelling dataset needs lots
of expensive symbolic computation.
Unsupervised learning is hard: because it is unclear if a
particular outcome is good or bad without seeing the rest.
What constitutes a meaningful and representative data set?
Insufficient quantities of real world data for deep learning.
How to perform data augmentation / synthetic data
generation to allow for generalisability on problems of interest?
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Variable Ordering for CAD (Slide 30/48)

CAD requires a variable ordering: there can be multiple valid
orderings which lead to an acceptable decomposition, but some
lead to smaller decompositions via less computation.
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CAD Variable Ordering Choice (Slide 31/48)

Depending on our application we may have a free or constrained
choice in variable ordering. When using CAD for QE we must
project variables in the order of quantification, but we are free to
change order within quantifier blocks (and with the free variables).

The variable ordering has been long known to effect the number of
cells produced in a CAD or even the tractability of a problem.

There are various human-designed heuristics to make the choice:
Simple heuristics which use only simple measures of
polynomials (degrees, sparsity etc.)
Expensive heuristics which use more involved algebraic
computations.
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Simple human-designed heuristics (Slide 32/48)

Brown’s Heuristic: chooses variable based on overall degree;
breaking ties with total degree of the terms with that variable;
breaking ties with number of terms the variable is in.

C. Brown
Companion to the Tutorial: Cylindrical Algebraic Decomposition,
presented at ISSAC 2004.
www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

gmods: chooses variable based on the sum of its degree in each
polynomial.

T. del Río and M. England
New Heuristic to Choose a Cylindrical Algebraic Decomposition Variable
Ordering Motivated by Complexity Analysis
Proc. CASC 2022, LNCS 13366, pp. 300−−317. Springer, 2022.
https://doi.org/10.1007/978-3-031-14788-3_17
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First use of ML for CAD variable ordering choice (Slide 33/48)

First attempt used a support vector machine classifier to choose
which of the three variable ordering heuristics we had implemented
in our CAD code to follow for a given problem instance: no one
heuristic dominated the others; ML choice did better than any one.

Z. Huang, M. England, D. Wilson, J. Davenport, L. Paulson and J.
Bridge.
Applying machine learning to the problem of choosing a heuristic to select
the variable ordering for cylindrical algebraic decomposition.
Intelligent Computer Mathematics (LNCS 8543), pp. 92-107. Springer
Berlin Heidelberg, 2014.
http://dx.doi.org/10.1007/978-3-319-08434-3_8

The first use of Machine Learning to optimise computer algebra.
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EPSRC ML4QE Project (Slide 34/48)

Experiments with ML methodology to choose the ordering directly.
In particular:

Classifier model choice.
New feature extraction methods to represent polynomials to
Machine Learning models: brute force combinations of simple
statistics followed by selection
Tailored hyper-parameter selection to runtime rather than
classification accuracy.

D. Florescu and M. England.
A Machine Learning Based Software Pipeline to Pick the Variable
Ordering for Algorithms with Polynomial Inputs.
Mathematical Software (LNCS 12097), pp. 302−311. Springer
International Publishing, 2020.
https://doi.org/10.1007/978-3-030-52200-1_30
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Dataset Considerations (Slide 35/48)

The above work used the QF_NRA SMT-LIB benchmarks: a
collection of satisfiability problems whose atoms are non-linear
polynomial constraints over the reals.

Chosen as the largest (only substantial) existing set of benchmarks
for CAD. Problems are meaningful: come from “industry”
(theorem provers MetiTarski and Keymaera), biology, economics,
dynamic geometry proofs, etc. However:

Dataset is highly imbalanced with respect to CAD variable
ordering. Risk of over-fitting given no reason to expect
imbalance in general data.
Data is highly dominated by one source of problems.
Dataset contains many problems that are very similar (e.g.
differ by a constant). Thus a risk of data leakage between
testing and training.
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Dataset Lessons (Slide 36/48)

1 Use variable permutations on problem instances to:
Balance dataset (random permutation on each instance).
Augment dataset (from each problem instance create a set of
instances from all possible permutations).

2 Merge problem instances who have the same CAD tree
structure in each variable ordering.

We find the loss of “accuracy” from (1a) is offset from (1b); while
(2) allows for similar learning from a dataset a fraction of the size.

Tereso del Río and M. England.
Data Augmentation for Mathematical Objects.
Proc. SC2 2023, CEUR-WS 3455, pp. 29−−38, 2023.
https://ceur-ws.org/Vol-3455/
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From Classification to Regression (Slide 37/48)

Prior work framed this as ML Classification (choose from discrete
set of variable orderings). May be reframed as ML Regression
predict the time taken with a particular ordering: multiple
predictions then compared to choose the final ordering. Why?

A model trained with regression has access to more
information: not just which ordering did best but also which
came second, which third etc.
However, regression is a more difficult task (but we only need
to be good enough at it to make a ranking).

So we hypothesised that regression would outperform classification.
T. del Río and M. England.
Lessons on Datasets and Paradigms in Machine Learning for Symbolic
Computation: A Case Study on CAD..
Submitted, 2024. https://doi.org/10.48550/arXiv.2401.13343
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Classification vs Regression Flowcharts (Slide 38/48)
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Classification vs. Regression Flowcharts (Slide 38/48)
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Classification vs. Regression Results (Slide 39/48)

Regression not universally beneficial, but new state-of-the-art ML.
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Remaining Challenges (Slide 40/48)

None of the above used Deep Learning. The dataset size, even
after augmentation, did not really support this.

Key remaining challenges:
1 How to create synthetic data sufficient for training deep

learning but representative of the problems to be solved in
reality?

2 Better representations of the mathematics to the ML models
than feature extraction. E.g. Graph Neural Networks.

Some progress on similar challenges in the context of symbolic
integration algorithm selection.
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Inspiration (Slide 41/48)

D. Peifer, M. Stillman, and D. Halpern-Leistner.
Learning selection strategies in Buchberger’s algorithm,
In: Proc. ICML 2020, pages 7575-7585, PMLR, 2020.

Applied reinforcement learning to choose the order in which to
process S-pairs in Buchberger’s algorithm for a Gröbner Basis.

Human analysis of their model revealed a simple, “human level”
strategy that explained most of the choices. Simple, but very
different the human-designed heuristics.

Suggests that ML can reveal new mathematical truths about the
algorithm, and direct future non-ML algorithm development.

How to automate such analysis?

M. England Real QE and ML
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Explainable AI (XAI) (Slide 42/48)

The field of Explainable AI (XAI) covers ML techniques whose
decisions can be explained to a human expert. XAI is increasingly
important: both as an error check on the ML process; and to build
trust in new AI technologies.

Ante-hoc explainable models are transparent by design in
their decisions, e.g. linear regression and support vector
machines which fit a line to maximise an objective.
Post-hoc explainability is where an ML model is trained as
normal, and then a secondary analysis provides an
interpretation.
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Post-hoc XAI for CAD Variable Ordering (Slide 43/48)

L. Pickering, T. Del Rio Almajano, M. England and K. Cohen.
Explainable AI Insights for Symbolic Computation: A case
study on selecting the variable ordering for cylindrical algebraic
decomposition.
Journal of Symbolic Computation, 123, Article Number
102276, 2024.

We applied the SHAP XAI tool to analyse the features used by ML
classifiers to choose the CAD variable ordering. Some features
identified as impactful had been known before; others were new.
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Example SHAP Waterfall Plot
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Designing a heuristics from SHAP output

We aggregated
across the dataset;
had models vote on
features to create
overall feature
ranking; took the
top 6 voted features
and studied ordered
triples of them
(similar to Brown’s
heuristic).
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Ante-hoc XAI for CAD Variable Ordering (Slide 46/48)

Started by formulating Brown’s heuristic as a neural network:

Where w is chosen so that F i(dv ) < 2 − 1 for all features and
variables.
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Searching the space of similar networks (Slide 47/48)

Starting from the Brown NN we optimise by ML training to:

use different features F i (i.e.
different feature triples);
use different weights (more
complicated combinations of
the same three pieces of
information).

What results is a heuristic
informed by a ML process but no
more complicated than the
human designed one.

This one is ongoing work with Dorian Florescu (not yet published).
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Summary of the Two XAI Experiments (Slide 48/48)

Both experiments took a human-designed heuristic as a starting
point and then used ML processes to produce another heuristic.

The latter is not human-designed but is human-level:
can be expressed in natural language in a similar amount of
text as a heuristic designed by a human;
can be implemented without any ML architecture.

Potentially these could be new methodologies for heuristic design.
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Thanks for Listening

Contact Details
Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/
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Chemical Reaction Networks (Slide 50/48)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1 + X2
k1 // 3X1

k2 // X1 + 2X2
k3 // 3X2

k4

ll .

From this we define a dynamical system:{
ẋ1 = (3 − 2)k1x1x1x2 − 2k2x3

1 − k3x1x2
2 + 2k4x3

2 ,
ẋ2 = −k1x2

1 x2 + 2k2x3
1 + k3x1x2

2 − 2k4x3
2 .

Steady states when all the derivatives are zero:{
k1x2

1 x2 − 2k2x3
1 − k3x1x2

2 + 2k4x3
2 = 0,

x1 + x2 − k5 = 0.

Parametric real semi-algebraic geometry problem.
M. England Real QE and ML
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Multistationarity (Slide 51/48)

A CRN exhibits multistationarity if there exists a choice of
parameter values for which the system has more than one
(positive real) solution.

Why care about multistationarity?
Used for switch behaviour.
Instrumental to cellular memory and cell differentiation during
development.
Used by micro organisms in survival strategies.
Used in decision making processes in the cell division cycle.

There are a variety of efficient methods for answering the Boolean
question as to whether or not a system can exhibit
multistationarity. Less studied is the question of determining the
actual parameter values where multistationarity occurs.
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Numeric Methods for Multistationarity 1 (Slide 52/48)

Numeric sampling of the parameter space is used. However:
Incorrect results can be obtained at ill-conditioned points.
No guarantee all areas of interest will be sampled.
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Numeric Methods for Multistationarity 2 (Slide 53/48)

Numeric sampling of the parameter space is used. However:
Incorrect results can be obtained at ill-conditioned points.
No guarantee all areas of interest will be sampled.

Image courtesy of AmirHosein SadeghiManesh.
M. England Real QE and ML
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Biology Example References
R. Bradford, J.H. Davenport, M. England, H. Errami, V. Gerdt,
D. Grigoriev, C. Hoyt, M. Košta, O. Radulescu, T. Sturm, and A. Weber.
Identifying the parametric occurrence of multiple steady states for some
biological networks.
Journal of Symbolic Computation, 98:84–119, 2020.

D. Lazard and F. Rouillier.
Solving parametric polynomial systems.
Journal of Symbolic Computation, 42(6):636–667, 2007.

G. Röst and A. Sadeghimanesh.
Exotic bifurcations in three connected populations with Allee effects.
International Journal of Bifurcation and Chaos, 31(13):2150202, 2021.

A. Sadeghimanesh and M. England.
Polynomial Superlevel Set Representation of the Multistationarity Region
of Chemical Reaction Networks.
BMC Bioinformatics, 23 Article number 391, 26 pages, 2022.
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Framework for Reasoning in Economics (Slide 54/48)

Determine whether, with variables Λ = (v1, . . . , vn), the hypotheses
H(Λ) follow from the assumptions A(Λ). I.e. answer

∀Λ . A(Λ) ⇒ H(Λ)?

Logically the answer must be True or False. But economists are
interested also in the following:

Are the assumptions themselves contradictory?
If False, can additional assumptions be made to give True?
If True, can any assumptions be removed?

Such questions can be answered by Real QE in many cases.
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TheoryGuru Framework (Slide 55/48)

TheoryGuru package for Mathematica led by Casey Milligan
(Chicago). For a proposed economics theorem, we check both:

the existence of an example
∃Λ, A ∧ H,
and the existence of a counterexample
∃Λ, A ∧ ¬H.

Then categorize the proposed theorem as:

¬∃Λ, A ∧ ¬H ∃Λ, A ∧ ¬H
∃Λ, A ∧ H True Mixed

¬∃Λ, A ∧ H Contradictory Assumptions False

An economist can explore: e.g. strengthen assumptions of Mixed
result, or weaken assumptions of True result.
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Example #0013 Context (Slide 56/48)

Context: Disagreement between Mulligan and
Krugman on causes of recession. In particular,
latter asserted that whenever taxes on labour
supply are primarily responsible for a recession
then wages increase. Benchmark Example
#0013 considers this claim.

Two scenarios to track: what actually happens
(act) when taxes (t) and demand forces (a)
together create a recession, and what would
have happened (hyp) if taxes on labour supply
had been the only factor affecting the market.

The labour demand and supply functions D(w , a) and S(w , t) meet
at the labour market equilibrium to supply quantity of labour q.

M. England Real QE and ML
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Example #0013 Logic (Slide 57/48)

A ≡ ∂D(w , a)
∂w < 0 ∧ ∂S(w , t)

∂w > 0

∧ ∂D(w , a)
∂a = 1 ∧ ∂S(w , t)

∂t = 1

∧ d
dact

(
D(w , a) = q = S(w , t)

)
∧ d

dhyp
(
D(w , a) = q = S(w , t)

)
∧ dt

dact = dt
dhyp ∧ da

dhyp = 0

∧ dq
dhyp <

1
2

dq
dact < 0

H ≡ dw
dact > 0.

Assumptions:
Usual slope restrictions.
Standard normalizations.
Scenarios both move labour
market equilibrium over
course of recession.
Scenarios have the same
tax change but only the act
scenario has a demand shift.
Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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dhyp = 0

∧ dq
dhyp <

1
2

dq
dact < 0

H ≡ dw
dact > 0.

Assumptions:
Usual slope restrictions.
Standard normalizations.
Scenarios both move labour
market equilibrium over
course of recession.
Scenarios have the same
tax change but only the act
scenario has a demand shift.
Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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We may view this as a Tarski formula in 12 variables,

Λ =
{ da

dact ,
da

dhyp ,
dt

dact ,
dt

dhyp ,

dq
dact ,

dq
dhyp ,

dw
dact ,

dw
dhyp ,

∂D(w , a)
∂a ,

∂S(w , t)
∂t ,

∂D(w , a)
∂w ,

∂S(w , t)
∂w

}
,

Each is representing a partial derivative describing the supply and
demand function or a total derivative indicating a change over time
within a scenario.
Evaluating the two existential problems shows that both examples
and counterexamples exist: the theorem is not universally true.

M. England Real QE and ML



The Real QE Problem
Optimising CAD via Machine Learning

Applications (time permitting)

Biology
Economics

Example #0013 Exploration (Slide 59/48)

If we leave ∂D(w ,a)
∂w and ∂S(w ,t)

∂w as free variables then QE recovers a
disjunction of three quantifier-free formulae. Two of them
contradict the assumptions, but the third, below, could be added
to A to guarantee the truth of H.

∂S(w , t)
∂w ≥ −∂D(w , a)

∂w > 0.

The added assumption states that labour supply is at least as
sensitive to wages as labour demand.

The algebra and logical reasoning above is not political! Any
politics comes with whether the assumptions hold. We cannot
remove the politics, but at least gain clarity over which arguments
are political and which not.

M. England Real QE and ML



The Real QE Problem
Optimising CAD via Machine Learning

Applications (time permitting)

Biology
Economics

Economics Example References

C. Mulligan, R. Bradford, J.H. Davenport, M. England, and
Z. Tonks.
Non-linear real arithmetic benchmarks derived from automated
reasoning in economics.
In Proc. SC2 ’1), CEUR-WS 2189, pages 48–60, 2018.
URL: http://ceur-ws.org/Vol-2189/.

C.B. Mulligan, J.H. Davenport, and M. England.
TheoryGuru: A Mathematica package to apply quantifier
elimination technology to economics.
In Proc. ICMS 2018, LNCS 10931, pages 369–378. Springer,
2018.
URL: https://doi.org/10.1007/978-3-319-96418-8_44.

M. England Real QE and ML

http://ceur-ws.org/Vol-2189/
https://doi.org/10.1007/978-3-319-96418-8_44


The Real QE Problem
Optimising CAD via Machine Learning

Applications (time permitting)

Biology
Economics

Thanks for Listening

Contact Details
Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/
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