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Al-Khwarizmi (Slide 1/26)

Al-Khwarizmi (780−850) was a Persian scholar whose work the
conference is named after. He made many contributions including:

Introducing the Arabic numeral system to
the west. The latinised form of his name
was first applied to algorism for
arithmetic with such numericals; and later
to algorithm meaning a sequence of
rigorous instructions to perform a task.
He wrote a book on solve linear and
quadratic equations, with abbreviated
name Al-Jabr. From this we get the word
algebra for mathematical statements
using variables for unspecified values.

My talk today is on algorithms for algebra!
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What is Computer Algebra? (Slide 2/26)

A Computation Algebra System (CAS) is computer software for
manipulating mathematical expressions and objects. A CAS gives
exact answers, in contrast to the more common approximate
numbers given by floating point arithmetic.
For example, a CAS can compute with the symbols 1

3 , π and
√

2
rather than their approximations 0.33333, 3.14159 and 1.41421.
Note: floating point arithmetic inaccurate even for finite decimals!
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Exact Arithmetic (Slide 3/26)

You learnt rules (algorithms) to do arithmetic with fractions at
school. There are also algorithms to do arithmetic with algebraic
numbers: those defined as the root of a polynomial equation, like√

2 which we define as the second root of x2 − 2.

Source: Stephen J. Brooks (Wikipedia)
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Why Use Computer Algebra? 1/3 (Slide 4/26)

Symbolic Computation usually take lots more computer resources
than numerical computation. So why use it?

The problem may be ill suited for a numerical solution (e.g.
chaotic behaviour; small inaccuracies give different answers).
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Why Use Computer Algebra? 2/3 (Slide 5/26)

Accuracy may be particularly important (e.g. safety critical
systems; formal verification; large numerics).
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Why Use Computer Algebra? 3/3 (Slide 6/26)

Because exact solutions offer fundamental insight that can be
missing from numerical ones. Understand not just what the
solution is but what it means; what properties it has.
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Computer Algebra Research Involves... (Slide 7/26)

Computer Science: Inventing algorithms and data
structures; implementing them; optimising them; evaluating
them and designing the accompanying user-interfaces.

E.g. A CAS will use unassigned variables as objects: so rather than
causing errors as they would in normal programming languages,
these are stored in expression trees like the below
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Computer Algebra Research Involves... (Slide 8/26)

Mathematics: Any algorithms we write should be proven to
provide the exact answer. It is not enough to show some tests
of them working: we need mathematical guarantees they will
always work!

Computer Algebra was one of the earliest
forms of computing (the first CASs were
released in the 1960s). But it is still an
active area of research today.

I am currently employed on the UKRI
EPSRC funded DEWCAD Project:
Pushing Back the Doubly-Exponential Wall
of Cylindrical Algebraic Decomposition.
Project # EP/T015748/1.
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Quantifiers (Slide 9/26)

Algebra uses variables to express and model the real world. Our
models can be far more expressive if we also allow quantifiers:
operators to specify how many individuals in the domain of
discourse for a variable are concerned by the statement.

We use the Existential Quantifier (∃ pronounced there
exists) to specify that at least one individual is concerned.
We use the Universal Quantifier (∀ pronounced for all) to
specify that all individuals are concerned.

When quantifiers are applied to real polynomial constraint systems,
it is a fact that there always exists an equivalent logical statement
that does not involve quantifiers.

Statements logically equivalent if true for the same values.
The quantifier free version is often longer but also can be
easier to understand / analyse / visualise.
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Real QE (Slide 10/26)

Real Quantifier Elimination (Real QE)
Given: A quantified formulae of real polynomial constraints;
Produce: a logically equivalent quantifier free formula.

Fully quantified examples:

Input: ∃x , x2 + 3x + 1 > 0
Output: True e.g. when x = 0

Input: ∀x , x2 + 3x + 1 > 0
Output: False e.g. when x = −1

Input: ∀x , x2 + 1 > 0
Output: True

Partially quantified example:

Input: ∀x , x2 + bx + 1 > 0
Output: ???

The answer depends on the free
(unquantified) variable, b.
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Partially quantified Tarski formulae example (Slide 11/26)

Consider ∀x , x2 + bx + 1 > 0.
When b = 0 and b = 3:

∀x , x2 + 1 > 0 is True,

∀x , x2 + 3x + 1 > 0 is False.

So in general the answer
depends on b.

Input: ∀x , x2 + bx + 1 > 0
Output: (−2 < b) ∧ (b < 2)

The technology we look at
today can answer such
questions automatically.
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Cylindrical Algebraic Decomposition (Slide 12/26)

Real QE may be achieved by building a
Cylindrical Algebraic Decomposition
(CAD). This is a mathematical object
which decomposes the space of our
variables into separate cells. Each cell is
algebraic meaning it is defined by an
(unquantified) algebraic formula. The
cells are arranged cylindrically meaning
they are stacked on top of each other.

Finally, the whole CAD is produced sign-invariant for a given set
of polynomials: meaning it has the guarantee that each polynomial
has a constant sign (positive, negative, or zero) in each cell.
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Why is a CAD good? (Slide 13/26)

A sign-invariant decomposition means
we can test a finite set of points and
understand what happens for the
polynomial system in an infinite real
space. We test one point per cell!

The algebraic property means we can identify the cells of
interest and then reconstruct solution formula to describe
them easily.
The cylindrical property means we can project and take inverse
of cells easily. We will see why that is useful in a moment.
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QE via CAD Example (Slide 14/26)

How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

b < −2 ∨ b = −2
∨b = 2 ∨ b > 2
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To solve we:
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Eliminating a universal quantifier (Slide 15/26)

So we can eliminate existential quantifiers by projecting the true
cells in a CAD. What about universal quantifiers?

Eliminate universal quantifiers by using the relation

∀xP(x) = ¬∃x¬P(x)

and then proceeding with existential QE.
Recall our original example was ∀x , x2 + bx + 1 > 0. The above
leads us to study ∃x , x2 + bx + 1 ≤ 0 which from the previous slide
we know has solution b ≤ −2 ∨ b ≥ +2. The solution to our
universally quantified problem is then the negation of this:
−2 < b ∧ b < +2 (as we found numerically earlier).

Note: cylindricity makes negating and projecting cells easy.
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How to build a CAD? (Slide 16/26)

The algorithm involves a sequence of algebraic computations,
performed in a CAS.

First a projection stage identifies lots more more polynomials
whose roots indicate changes in the behaviour of the original
input polynomials.
Then we iteratively decompose space with respect to the roots
of these, working at a sample point to render polynomials
univariate and extrapolating conclusions to the cell.

It involves lots of computer science (programming the algorithm
and data-structures) and mathematics (proving that our
conclusions at a sample point are valid across the cell).
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Trying out a Real QE tool yourself (Slide 17/26)

Both of the big proprietary Computer Algebra Systems have QE
implementations: Mathematica (the Resolve command) and
Maple (RegularChains:-SemiAlgebraicSetTools;
QuantifierElimination:-CylindricalAlgebraicDecompose;
and RootFinding:-Parametric:-CellDecomposition).

The specialist computer algebra system Qepcad-B is dedicated to
QE via CAD and is available for free. It can be used via an the
interface Tarski, is available as a sub-package of Sage (for
Python) and as part of GeoGebra Discovery which you can access
for free online: https://autgeo.online/

CAD implementations also exist in the SMT-solvers, SMT-RAT,
Yices2, Z3 and cvc5.
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The doubly exponential wall of CAD (Slide 18/26)

Real QE via CAD works in theory. But in practice it is too
expensive. The cost of building a CAD can grow doubly
exponentially with the number of variables.

223 = 256 224 = 65, 536 225 = 4, 294, 967, 296
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Pushing back the doubly exponential wall (Slide 19/26)

We have experimented
with using ideas and
tools from other areas
of computer science:

Machine Learning
(AI)
SAT-solvers

to improve CAD:
pushing back the
doubly exponential
wall!
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Machine Learning and Computer Algebra (Slide 20/26)

Machine Learning (ML) tools use statistics and large quantities
of data to learn how to perform tasks not explicitly programmed.
ML is behind the modern Artificial Intelligence (AI) technology.

ML can only ever offer probabilistic guidance: it is never
guaranteed to be correct always. 99% accuracy is great for chat
generation and image recognition, but not to replace computer
algebra where we need exact answers.

However, ML techniques can be used to make non-critical choices
and guide searches. Used in this way, the ML performance has no
affect on the mathematical correctness of the final result, but can
make a substantial contribution to both computational efficiency
and presentation of the end result.
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Variable Ordering for CAD (Slide 21/26)

CAD requires a variable ordering: there can be multiple valid
orderings which lead to an acceptable decomposition, but some
lead to smaller decompositions via less computation.
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CAD Variable Ordering Choice (Slide 22/26)

When using CAD for QE we must project variables in the order of
quantification, but we are free to change order within quantifier
blocks (and with the free variables).
E.g. to solve ∃x∃y∀a∀bF (x , y , a, b) we could use any of these
orderings to build our CAD:

x ≻ y ≻ a ≻ b
x ≻ y ≻ b ≻ a
y ≻ x ≻ a ≻ b
y ≻ x ≻ b ≻ a

Any of these produce a CAD we could use for QE. But some may
have many more cells which take much more time to produce.
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Our work with ML for CAD (Slide 23/26)

We have experimented with:
different machine learning models (algorithms which train on
data to make the predictions);
different ways to embed the polynomials (how to present
them to the ML models);
different ways to frame the problem to machine learning
(e.g. classify an ordering, predict how long an order will take,
predict which variable to order next);
data augmentation (to maximise our learning from the
dataset of real world problems);
explainable AI to produce ML independent code.

The first use of AI for computer algebra optimisation.
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SAT-solvers (Slide 24/26)

SAT solvers dedicated to solving Boolean satisfiability problems:
formulae where the variables are just either true or false.

These problems should be hard: the space of
possible solutions is huge and grows
exponentially with number of variables. But
SAT-solvers can solve practical problems with
tens of thousands of variables!

They use sophisticated search algorithms which
1 often find solutions quickly; and
2 when there is no solution rule out huge

chunks of the space in one go.
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Re-designing CAD inspired by SAT (Slide 25/26)

We have designed new algorithms:
Use the same mathematical theory to
prove their correctness as CAD;
But perform different computation
inspired by SAT-solvers.

The new algorithms:
are search based, computing one CAD
cell at a time instead of all at once;
analyse to rule out similar cases
(growing cells as large as possible);
build coverings of space rather than
decompositions (overlapping cells);
use SAT-solvers themselves to analyse
any logical structure.
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Summary (Slide 26/26)

Computer algebra is an interesting and active field of research
using both computer science (algorithms) and mathematics
(algebra). Al-Khwarizmi would have been interested!
Real Quantifier Elimination is a powerful tool in mathematics
which can be useful in science and engineering.
Although the mathematics of CAD was established almost 50
years ago, recently significance progress has been made by
integrating this with other algorithmic domains: SAT-solvers
and Machine Learning.

Message: When working on a problem look for inspiration from
other areas that you can transfer to your area!
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Thanks for Listening

These slides and links to formal publications are available here:
https://matthewengland.coventry.domains/
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