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Overview (Slide 1/58)

The talk will describe the Real Quantifier Elimination Problem,
some applications in biology and economics, and some of the
recent algorithmic developments that Coventry University has been
involved in.

Joint work with: Chris Brown, Erika Abraham, Russell Bradford,
Kelly Cohen, James Davenport, Tereso del Rio, Hassan Errami,
Vladimir Gerdt, Dima Grigoriev, Charles Hoyt, Marek Kosta,
Gereon Kremer, Casey Mulligan, Lynn Pickering, Jasper Nalbach,
Ovidiu Radulescu, AmirHosein Sadeghi Manesh, Thomas Sturm,
Zak Tonks and Andreas Weber.
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Real QE (Slide 2/58)

Real Quantifier Elimination (Real QE)
Given: A quantified formulae (in prenex normal form) whose
atoms are (integral) polynomial constraints;
Produce: a quantifier free formula logically equivalent over R.

Fully quantified examples:

Input: ∃x , x2 + 3x + 1 > 0
Output: True e.g. when x = 0

Input: ∀x , x2 + 3x + 1 > 0
Output: False e.g. when x = −1

Input: ∀x , x2 + 1 > 0
Output: True

Partially quantified example:

Input: ∀x , x2 + bx + 1 > 0
Output: ???

The answer depends on the free
(unquantified) variable, b.
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Partially quantified Tarski formulae example (Slide 3/58)

Consider ∀x , x2 + bx + 1 > 0.
When b = 0 and b = 3:

∀x , x2 + 1 > 0 is True,

∀x , x2 + 3x + 1 > 0 is False.

So in general the answer
depends on b.

Input: ∀x , x2 + bx + 1 > 0
Output: (−2 < b) ∧ (b < 2)

The technology we look at
today can answer such
questions automatically.
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Numeric vs. Symbolic solution? (Slide 4/58)

The solution in the previous slide was essentially numeric: try what
happens for many different values and interpolate a solution.

The alternative is to use Symbolic Computation: algorithms and
data-structures for manipulating exact mathematical expressions
and objects. Traditionally implemented in Computer Algebra
Systems (e.g. Maple, Mathematica, Sage).

Advantages of Symbolic Computation:
Can solve numerically ill-conditioned problems.
Provide guarantees for safety critical systems.
Provide fundamental insight into the system.

Disadvantage of Symbolic Computation: more expensive!
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Cylindrical Algebraic Decomposition (Slide 5/58)

A Cylindrical Algebraic Decomposition (CAD) is:
a decomposition of Rn into a set of cells Ci (i.e. ⋃

i Ci = Rn

and Ci ∩ Cj = ∅ if i ̸= j) such that:
cells are semi-algebraic meaning they may be described by a
finite sequence of polynomial constraints;
cells are cylindrical meaning the projection of any two onto a
lower coordinate space in the variable ordering are identical or
disjoint (i.e. the cells in Rm stack up in cylinders over cells
from CAD in Rm−1).

G.E. Collins.
Quantifier elimination for real closed fields by cylindrical
algebraic decomposition.
In Proc. 2nd GI Conf. Automata Theory and Formal
Languages, pp. 134−183. Springer-Verlag, 1975.
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CAD Invariance Property (Slide 6/58)

CAD may also refer to an algorithm that produces the CAD object.

The traditional CAD algorithm introduced by Collins in the 1970s
takes a set of input polynomials and produces a CAD such that
each polynomial has constant sign in each cell: this additional
property is called sign-invariance.
Such a CAD allows us to uncover properties of polynomials over
infinite space by examining finite set of sample points.

Most applications (e.g. QE) actually provide as input a logical
formulae built from polynomial constraints and require as output a
truth-invariant CAD: one such that each formula has constant
truth value in each cell.
Such a CAD allows us to find solution sets from the descriptions of
true cells: semi-algebraic; easy to visualise and check membership.
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Example: Circle − visualisation (Slide 7/58)

Cell 1: x < −1, y free
Cell 2: x = −1, y < 0
Cell 3: x = −1, y = 0
Cell 4: x = −1, y > 0
Cell 5: −1 < x < 1,

y 2 + x2 − 1 > 0, y < 0
Cell 6: −1 < x < 1,

y 2 + x2 − 1 = 0, y < 0
Cell 7: −1 < x < 1,

y 2 + x2 − 1 < 0
Cell 8: −1 < x < 1,

y 2 + x2 − 1 = 0, y > 0
Cell 9: −1 < x < 1,

y 2 + x2 − 1 > 0, y > 0
Cell 10: x = 1, y < 0
Cell 11: x = 1, y = 0
Cell 12: x = 1, y > 0
Cell 13: x > 1, y free
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How to build a CAD? (Slide 8/58)

The usual approach is to calculate projection polynomials whose
roots indicate changes in the behaviour of the input set;
decompose with respect to these and then lift back working at a
sample point. Safe if the projection provides delineability.
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QE via CAD Example (Slide 9/58)

How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

b < −2 ∨ b = −2
∨b = 2 ∨ b > 2
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∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

b < −2 ∨ b = −2
∨b = 2 ∨ b > 2
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QE via CAD Example (Slide 9/58)

How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

b < −2 ∨ b = −2
∨ b = 2 ∨ b > 2
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QE via CAD Example (Slide 9/58)

How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

=⇒
b ≤ −2 ∨ b ≥ 2
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QE via CAD in General (Slide 10/58)

In general we can perform Real QE on a decomposition as follows.
Eliminate existential quantifiers by projecting the true cells,
as in the previous example.
Eliminate universal quantifiers by using the relation

∀xP(x) = ¬∃x¬P(x)

and then proceeding with existential QE.
Recall our original example was ∀x , x2 + bx + 1 > 0. The above
leads us to study ∃x , x2 + bx + 1 ≤ 0 which from the previous slide
we know has solution b ≤ −2 ∨ b ≥ +2. The solution to our
universally quantified problem is then the negation of this:
−2 < b ∧ b < +2, as we found numerically earlier.
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Cylindricity Property (Slide 11/58)

Decompositions allow us to understand infinite space with a finite
number of samples and (semi-) algebraic cells allows us to
construct solution formulae easily. But why cylindricity?

The Real QE solution process requires us to project cells (and
combine those projections) and to calculate the complement of
cells: both of these things are trivial for cells arranged cylindrically.

Cylindricity means we can
think of CAD as a tree
branching by variable.
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CAD Complexity (Slide 12/58)

By the end of projection you have doubly exponentially many
polynomials of doubly exponential degree (in the number of
projections, i.e. variables). Hence also the number of real roots,
cells and time to compute them grows doubly exponentially!

C. Brown and J.H. Davenport.
The complexity of quantifier elimination and cylindrical
algebraic decomposition.
In Proc. ISSAC ’07, pages 54–60. ACM, 2007.

Thus in practice applications are only realistic for 4 or 5 variable,
unless specific optimisations are utilised.
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The Doubly Exponential Wall (Slide 13/58)

Exponential Growth Doubly Exponential Growth
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QE via CAD Implementations (Slide 14/58)

Both of the big proprietary Computer Algebra Systems have QE
implementations: Mathematica (the Resolve command) and
Maple (inside RegularChains:-SemiAlgebraicSetTools).

The specialist computer algebra system QepcadB is dedicated to
QE via CAD and is available for free. It can be used via an
intelligent interface Tarski, is available as a sub-package of
Sage, and can now even run in your browser!

http://tarski.tk/

CAD implementations also exist in the SMT-solvers, SMT-RAT,
Yices2, Z3 and cvc5. All are available for free − but note these
can only answer fully quantified problems.

M. England Real QE: Progress and Applications
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Alternatives to CAD for QE (Slide 15/58)

There exists algorithms to achieve Real QE other than via CAD:
Virtual Term Substitution: more efficient but degree
limitations. Implementations in Mathematica and
Redlog.
QE via Comprehensive Gröbner Bases: more efficient if many
equations. Implementation in SyNnRAC package for
Maple.
Family of algorithms for Real QE with complexity doubly
exponential in the number of quantifier eliminations. No
implementations and analysis suggests that the crossover
point where the asymptomatic growth becomes relevant is to
far away for practical use.
Variety of specialist Real QE algorithms for input of certain
shape.
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Alternatives to CAD for QE (Slide 15/58)

There exists algorithms to achieve Real QE other than via CAD:
Virtual Term Substitution: more efficient but degree
limitations. Implementations in Mathematica and
Redlog.
QE via Comprehensive Gröbner Bases: more efficient if many
equations. Implementation in SyNnRAC package for
Maple.
Family of algorithms for Real QE with complexity doubly
exponential in the number of quantifier eliminations. No
implementations and analysis suggests that the crossover
point where the asymptomatic growth becomes relevant is to
far away for practical use.
Variety of specialist Real QE algorithms for input of certain
shape.
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Alternatives to CAD for QE References
T. Sturm.
Thirty years of virtual substitution: Foundations, techniques, applications.
In Proc. ISSAC 2018, pages 11–16, ACM, 2018.

R. Fukasaku, H. Iwane, and Y. Sato.
Real quantifier elimination by computation of comprehensive Gröbner
systems.
In Proc. ISSAC ’15, pages 173–180. ACM, 2015.

J. Renegar.
Recent progress on the complexity of the decision problem for the reals.
In B.F. Caviness and J.R. Johnson, editors, Quantifier Elimination and
Cylindrical Algebraic Decomposition, pages 220–241. Springer-Verlag,
1998.

H.P. Le and M. Safey El Din.
Faster one block quantifier elimination for regular polynomial systems of
equations.
In Proc. ISSAC ’21, pages 265–272. ACM, 2021.
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Real QE Applications (Slide 16/58)

QE can solve problems throughout engineering & science. E.g.
derivation of optimal numerical schemes.
artificial intelligence to pass university entrance exam.
automated theorem proving.
automated loop parellisation.
structural design (minimising the weight of trusses).

...
There is no lack of potential applications: the problem is scaling
up in the face of high complexity!
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QE Applications References

M. Erascu and H. Hong.
Real quantifier elimination for the synthesis of optimal numerical algorithms
(Case study: Square root computation).
Journal of Symbolic Computation, 75:110–126, 2016.

N.H. Arai, T. Matsuzaki, H. Iwane, and H. Anai.
Mathematics by machine.
In Proc. ISSAC ’14, pages 1–8. ACM, 2014.

L.C. Paulson.
Metitarski: Past and future.
In Proc ITP ’12, pages 1–10. Springer, 2012.

A. Grosslinger, M. Griebl, and C. Lengauer.
Quantifier elimination in automatic loop parallelization.
Journal of Symbolic Computation, 41(11):1206–1221, 2006.

A.E. Charalampakis and I. Chatzigiannelis.
Analytical solutions for the minimum weight design of trusses by cylindrical
algebraic decomposition.
Archive of Applied Mechanics, 88(1):39–49, 2018.
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Chemical Reaction Networks (Slide 17/58)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1 + X2
k1 // 3X1

k2 // X1 + 2X2
k3 // 3X2

k4

ll .

Species: X1, X2.
Reactions:

2X1 + X2
k1−−→ 3X1

3X1
k2−−→ X1 + 2X2

X1 + 2X2
k3−−→ 3X2

3X2
k4−−→ 2X1 + X2
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Chemical Reaction Networks (Slide 17/58)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1 + X2
k1 // 3X1

k2 // X1 + 2X2
k3 // 3X2

k4

ll .

From this we define a dynamical system:{
ẋ1 = (3 − 2)k1x1x1x2 − 2k2x3

1 − k3x1x2
2 + 2k4x3

2 ,
ẋ2 = −k1x2

1 x2 + 2k2x3
1 + k3x1x2

2 − 2k4x3
2 .
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Chemical Reaction Networks (Slide 17/58)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1 + X2
k1 // 3X1

k2 // X1 + 2X2
k3 // 3X2

k4

ll .

From this we define a dynamical system:{
ẋ1 = k1x2

1 x2 − 2k2x3
1 − k3x1x2

2 + 2k4x3
2 ,

ẋ2 = −k1x2
1 x2 + 2k2x3

1 + k3x1x2
2 − 2k4x3

2 .

Note that the sum of the derivatives is zero. We thus have a
conservation law, that the sum of x1 and x2 is a constant:

x1 + x2 = k5.
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CRN Steady States (Slide 18/58)

A CRN has steady states when all the derivatives are zero. For our
toy example these occur where{

k1x2
1 x2 − 2k2x3

1 − k3x1x2
2 + 2k4x3

2 = 0,
x1 + x2 − k5 = 0.

In this system we have
Variables, the xis: concentrations of species.
Parameters, the kis: reaction rate constants and constants of
conservation laws.

All of these must be non-negative real numbers. Although not
quantified, we may still use CAD to identify and describe the
solution regions.
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Multistationarity (Slide 19/58)

A CRN exhibits multistationarity if there exists a choice of
parameter values for which the system has more than one
(positive real) solution.

Why care about multistationarity?
Used for switch behaviour.
Instrumental to cellular memory and cell differentiation during
development.
Used by micro organisms in survival strategies.
Used in decision making processes in the cell division cycle.

There are a variety of efficient methods for answering the Boolean
question as to whether or not a system can exhibit
multistationarity. Less studied is the question of determining the
actual parameter values where multistationarity occurs.
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Numeric Methods for Multistationarity 1 (Slide 20/58)

Numeric sampling of the parameter space is used. However:
Incorrect results can be obtained at ill-conditioned points.
No guarantee all areas of interest will be sampled.
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Numeric Methods for Multistationarity 2 (Slide 21/58)

Numeric sampling of the parameter space is used. However:
Incorrect results can be obtained at ill-conditioned points.
No guarantee all areas of interest will be sampled.

Image from AmirHosein SadeghiManesh.
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Symbolic Methods for Multistationarity (Slide 22/58)

The identification of regions of multistationarity can be achieved
by symbolic methods for non-linear real arithmetic.

For our toy example, symbolic tools can determine that the
semi-algebraic system

k1x2
1 x2 − 2k2x3

1 − k3x1x2
2 + 2k4x3

2 = 0,
x1 + x2 − k5 = 0,
x1, x2, k1, k2, k3, k4, k5 > 0,

has multiple solutions if and only if

8k3
1 k4 − k2

1 k2
3 − 72k1k2k3k4 + 432k2

2 k2
4 + 8k2k2

3 < 0.

What about a larger example?
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Case Study: Model 26 (Slide 23/58)

From: www.ebi.ac.uk/biomodels-main/BIOMD0000000026

ẋ1 = k2x6 + k15x11 − k1x1x4 − k16x1x5

ẋ2 = k3x6 + k5x7 + k10x9 + k13x10 − x2x5(k11 + k12) − k4x2x4

ẋ3 = k6x7 + k8x8 − k7x3x5

ẋ4 = x6(k2 + k3) + x7(k5 + k6) − k1x1x4 − k4x2x4

ẋ5 = k8x8 + k10x9 + k13x10 + k15x11−
x2x5(k11 + k12) − k7x3x5 − k16x1x5

ẋ6 = k1x1x4 − x6(k2 + k3)
ẋ7 = k4x2x4 − x7(k5 + k6) 11 differential equations
ẋ8 = k7x3x5 − x8(k8 + k9) 11 variables
ẋ9 = k9x8 − k10x9 + k11x2x5 16 parameters
˙x10 = k12x2x5 − x10(k13 + k14)
˙x11 = k14x10 − k15x11 + k16x1x5

M. England Real QE: Progress and Applications

www.ebi.ac.uk/biomodels-main/BIOMD0000000026


The Real QE Problem
Some Recent Applications

New Algorithmic Developments

Biology
Economics

Parameters and Conservation Laws (Slide 24/58)
The Biomodels database gives reliable estimates of the rate
constants for this example.

k1 = 0.02, k3 = 0.01, k4 = 0.032,
k7 = 0.045, k9 = 0.092, k11 = 0.01,

k12 = 0.01, k15 = 0.086, k16 = 0.0011.

k2 = 1, k5 = 1, k6 = 15, k8 = 1,
k10 = 1, k13 = 1, k14 = 0.5.

Three Linear Conservation Constraints may be derived:

x5 + x8 + x9 + x10 + x11 = k17

x4 + x6 + x7 = k18

x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = k19

These introduce new parameters for which there are not good
estimates. Treat as symbolic parameters.
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Algebraic System of Interest (Slide 25/58)

0 = −200x1x4 − 11x1x5 + 860x11 + 10000x6,

0 = −16x2x4 − 10x2x5 + 500x10 + 5x6 + 500x7 + 500x9,

0 = −9x3x5 + 3000x7 + 200x8,

0 = −10x1x4 − 16x2x4 + 505x6 + 8000x7,

0 = −11x1x5 − 200x2x5 − 450x3x5 + 10000x10 + 860x11 + 10000x8 + 10000x9,

0 = 2x1x4 − 101x6,

0 = 4x2x4 − 2000x7, 14 polynomial equations
0 = 45x3x5 − 1092x8, 14 positivity conditions
0 = 5x2x5 + 46x8 − 500x9, 11 variables
0 = x2x5 − 150x10, 3 parameters
0 = 11x1x5 + 5000x10 − 860x11,

0 = −k17 + x10 + x11 + x5 + x8 + x9,

0 = −k18 + x4 + x6 + x7,

0 = −k19 + x1 + x10 + x11 + x2 + x3 + x6 + x7 + x8 + x9,

0 < x1, . . . , 0 < x11, 0 < k17, 0 < k18, 0 < k19.
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Algebraic System of Interest (Slide 25/58)

0 = −200x1x4 − 11x1x5 + 860x11 + 10000x6,

0 = −16x2x4 − 10x2x5 + 500x10 + 5x6 + 500x7 + 500x9,

0 = −9x3x5 + 3000x7 + 200x8,

0 = −10x1x4 − 16x2x4 + 505x6 + 8000x7,

0 = −11x1x5 − 200x2x5 − 450x3x5 + 10000x10 + 860x11 + 10000x8 + 10000x9,

0 = 2x1x4 − 101x6,

0 = 4x2x4 − 2000x7, 14 polynomial equations
0 = 45x3x5 − 1092x8, 14 positivity conditions
0 = 5x2x5 + 46x8 − 500x9, 11 variables
0 = x2x5 − 150x10, 3 parameters
0 = 11x1x5 + 5000x10 − 860x11, 14 symbolic indeterminates
0 = −k17 + x10 + x11 + x5 + x8 + x9,

0 = −k18 + x4 + x6 + x7,

0 = −k19 + x1 + x10 + x11 + x2 + x3 + x6 + x7 + x8 + x9,

0 < x1, . . . , 0 < x11, 0 < k17, 0 < k18, 0 < k19.
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Symbolic Methods I of IV (Slide 26/58)

We seek a decomposition of the parameter space so CAD is a
potential tool. But this example is past the doubly exponential
wall. We need something else first.

1. CRN models often have low total degrees with many linear
monomials. Idea: pre-processing input with parametric
Gaussian Elimination (pGE): i.e. solving suitable equations
with respect to some variable and substituting the
corresponding solution into the system.
Requires case distinctions but these often cancelled out by the
positivity constraints.
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Model 26: After pGE Pre-processing (Slide 27/58)

ψ = x5 > 0 ∧ x4 > 0 ∧ k19 > 0 ∧ k18 > 0 ∧ k17 > 0
∧ 1062444k18x2

4 x5 + 23478000k18x2
4 + 1153450k18x4x2

5 + 2967000k18x4x5

+ 638825k18x3
5 + 49944500k18x2

5 − 5934k19x2
4 x5 − 989000k19x4x2

5

− 1062444x3
4 x5 − 23478000x3

4 − 1153450x2
4 x2

5 − 2967000x2
4 x5

− 638825x4x3
5 − 49944500x4x2

5 = 0
∧ 1062444k17x2

4 x5 + 23478000k17x2
4 + 1153450k17x4x2

5 + 2967000k17x4x5

+ 638825k17x3
5 + 49944500k17x2

5 − 1056510k19x2
4 x5 − 164450k19x4x2

5

− 638825k19x3
5 − 1062444x2

4 x2
5 − 23478000x2

4 x5 − 1153450x4x3
5

− 2967000x4x2
5 − 638825x4

5 − 49944500x3
5 = 0.
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Symbolic Methods II of IV (Slide 28/58)

C.Chen, J.Davenport, J.May, M.Moreno Maza, B.Xia, R.Xiao.
Triangular decomposition of semi-algebraic systems.
Journal of Symbolic Computation, 49:3–26, 2013.

2. A Real Triangularization is a decomposition of a polynomial
system into finitely many regular semi-algebraic systems. Real
counterparts of the well studied triangular decompositions
over C.
The paper that introduced them also outlined a Lazy variant
of the algorithm which produces the highest dimension
component and unevaluated function calls for the rest
(guaranteed of lower dimension). If we just use the former we
are blind to what happens on the boundaries, but this is not
usually relevant to biology applications.

M. England Real QE: Progress and Applications



The Real QE Problem
Some Recent Applications

New Algorithmic Developments

Biology
Economics

Model 26: LRT and Open CAD (Slide 29/58)

With two free parameters we can perform a Lazy Real
Triangularize and then an (open) CAD of the largest component.

M. England Real QE: Progress and Applications



The Real QE Problem
Some Recent Applications

New Algorithmic Developments

Biology
Economics

Reference

Approaches 1 and 2 appear here:

R. Bradford, J.H. Davenport, M. England, H. Errami,
V. Gerdt, D. Grigoriev, C. Hoyt, M. Košta, O. Radulescu,
T. Sturm, and A. Weber.
Identifying the parametric occurrence of multiple steady states
for some biological networks.
Journal of Symbolic Computation, 98:84–119, 2020.
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Symbolic Methods III of IV (Slide 30/58)

D. Lazard and F. Rouillier.
Solving parametric polynomial systems.
Journal of Symbolic Computation, 42(6):636–667, 2007.

3. The Discriminant Variety was introduced in 2009 as the
variety in a parameter space over which a system of equations
has invariant number of solutions. Thus a CAD of such a
variety would provide the decomposition we need.
Computed via a Gröbner Basis calculation on the polynomials
and the determinant of the Jacobian matrix.
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Model 26: Discriminant Variety (Slide 31/58)

D. Lichtblau.
Symbolic analysis of multiple steady states in a MAPK chemical reaction
network.
Journal of Symbolic Computation, 105:118–144, 2021.
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Symbolic Methods IV of IV (Slide 32/58)

4. The Discriminant Variety is the optimal object to perform
the decomposition upon. However, it can be expensive. A
superset containing it can be produced through resultant
methods.

A. Sadeghimanesh and M. England.
Resultant Tools for Parametric Polynomial Systems with
Application to Population Models.
Submitted. Preprint at arXiv:2201.13189.

Paper applies the approach to a problem from population dynamics
for which calculating the discriminant variety with GB was
infeasible. But the superset could be constructed and decomposed
easily to allow for analysis by CAD.
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Discriminant Variety via Resultants Example (Slide 33/58)
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Symbolic-Numeric Approaches Possible (Slide 34/58)

Scope for symbolic-numeric methods:
M. England, H. Errami, D. Grigoriev, O. Radulescu, T. Sturm, and A. Weber.
Symbolic versus numerical computation and visualization of parameter regions
for multistationarity of biological networks.
In Proc. CASC ’17, pages 93–108. Springer, 2017.

G. Röst and A. Sadeghimanesh.
Exotic bifurcations in three connected populations with Allee effects.
International Journal of Bifurcation and Chaos, 31(13):2150202, 2021.

Scope for numeric sampling based decomposition approach.
E. Feliu and A. Sadeghimanesh.
Kac-Rice formulas and the number of soluions of parametrized systems of
polynomial equations.
Mathematics of Computation, 91:338, 2022.

A. Sadeghimanesh and M. England.
Polynomial Superlevel Set Representation of the Multistationarity Region of
Chemical Reaction Networks.
BMC Bioinformatics, 23 Article number 391, 26 pages, 2022.
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Framework for Reasoning in Economics (Slide 35/58)

Determine whether, with variables Λ = (v1, . . . , vn), the hypotheses
H(Λ) follow from the assumptions A(Λ). I.e. answer

∀Λ . A(Λ) ⇒ H(Λ)?

Logically the answer must be True or False. But economists are
interested also in the following:

Are the assumptions themselves contradictory?
If False, can additional assumptions be made to give True?
If True, can any assumptions be removed?

Such questions can be answered by Real QE in many cases.
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Categorisation by a pair of statements (Slide 36/58)

TheoryGuru package for Mathematica led by Casey Milligan
(Chicago). For a proposed economics theorem, we check both:

the existence of an example
∃Λ, A ∧ H,
and the existence of a counterexample
∃Λ, A ∧ ¬H.

Then we can categorize the proposed theorem as follows:

¬∃Λ, A ∧ ¬H ∃Λ, A ∧ ¬H
∃Λ, A ∧ H True Mixed

¬∃Λ, A ∧ H Contradictory Assumptions False
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Theory Exploration (Slide 37/58)

An economist could vary the question by strengthening the
assumptions that led to a Mixed result in search of a True
theorem; or weaken the assumptions that generated a True result
to identify a theorem that can be applied more widely.

This may be discovered by quantifying more or less of the variables
in Λ. For example, partition Λ as Λ1, Λ2 and ask for

{Λ1 : ∀Λ2 . A(Λ1, Λ2) ⇒ H(Λ1, Λ2)}.

This can be tackled with Real QE to result in a formula in the free
variables that can be used to modify the assumptions accordingly.
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Simple Example: Marshall 1895 (Slide 38/58)

Marshall considered the effect of a
reduction in supply costs, a, concluding
that for any supply-demand equilibrium
in which the two curves have their usual
slopes, a downward supply shift
increases the equilibrium quantity and
decreases the equilibrium price.

A ≡ D′(q) < 0 ∧ S ′(q) > 0 ∧ dp
da = d

da
(
S(q) − a

) ∧ dp
da = d

daD(q)

H ≡ dq
da > 0 ∧ dp

da < 0

Here dq
da is the quantity impact and dp

da the price impact of the cost
reduction − describing the move in equilibrium.
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Marshall as Real QE (Slide 39/58)

To study as a Tarski formula we set the “variables” Λ to be four
real numbers (v1, v2, v3, v4):

Λ =
{

D′(q), S ′(q), dq
da ,

dp
da

}
.

Then, after applying the chain rule, A and H may be understood
as Boolean combinations of polynomial equalities and inequalities:

A ≡ v1 < 0 ∧ v2 > 0 ∧ v4 = v3v2 − 1 ∧ v4 = v3v1,

H ≡ v3 > 0 ∧ v4 < 0.

From here it takes only a little reasoning by hand to see that
A ⇒ H. Any of the Real QE tools mentioned earlier can conclude
this almost instantly.
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Example #0013 Context (Slide 40/58)

Context: Disagreement between Mulligan and
Krugman on causes of recession. In particular,
latter asserted that whenever taxes on labour
supply are primarily responsible for a recession
then wages increase. Benchmark Example
#0013 considers this claim.

Two scenarios to track: what actually happens (act) when taxes
(t) and demand forces (a) together create a recession, and what
would have happened (hyp) if taxes on labour supply had been the
only factor affecting the labour market.

The labour demand and supply functions D(w , a) and S(w , t) meet
at the labour market equilibrium to supply quantity of labour q.
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Example #0013 Logic (Slide 41/58)

A ≡ ∂D(w , a)
∂w < 0 ∧ ∂S(w , t)

∂w > 0

∧ ∂D(w , a)
∂a = 1 ∧ ∂S(w , t)

∂t = 1

∧ d
dact

(
D(w , a) = q = S(w , t)

)
∧ d

dhyp
(
D(w , a) = q = S(w , t)

)
∧ dt

dact = dt
dhyp ∧ da

dhyp = 0

∧ dq
dhyp <

1
2

dq
dact < 0

H ≡ dw
dact > 0.

Assumptions:
Usual slope restrictions.
Standard normalizations.
Scenarios both move labour
market equilibrium over
course of recession.
Scenarios have the same
tax change but only the act
scenario has a demand shift.
Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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Example #0013 Result (Slide 42/58)

We may view this as a Tarski formula in 12 variables,

Λ =
{ da

dact ,
da

dhyp ,
dt

dact ,
dt

dhyp ,

dq
dact ,

dq
dhyp ,

dw
dact ,

dw
dhyp ,

∂D(w , a)
∂a ,

∂S(w , t)
∂t ,

∂D(w , a)
∂w ,

∂S(w , t)
∂w

}
,

Each is representing a partial derivative describing the supply and
demand function or a total derivative indicating a change over time
within a scenario.
Evaluating the two existential problems shows that both examples
and counterexamples exist: the theorem is not universally true.
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Example #0013 Exploration (Slide 43/58)

If we leave ∂D(w ,a)
∂w and ∂S(w ,t)

∂w as free variables then QE recovers a
disjunction of three quantifier-free formulae. Two of them
contradict the assumptions, but the third, below, could be added
to A to guarantee the truth of H.

∂S(w , t)
∂w ≥ −∂D(w , a)

∂w > 0.

The added assumption states that labour supply is at least as
sensitive to wages as labour demand.
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Economics Example References

C. Mulligan, R. Bradford, J.H. Davenport, M. England, and
Z. Tonks.
Non-linear real arithmetic benchmarks derived from automated
reasoning in economics.
In Proc. SC2 ’1), CEUR-WS 2189, pages 48–60, 2018.
URL: http://ceur-ws.org/Vol-2189/.
C.B. Mulligan, J.H. Davenport, and M. England.
TheoryGuru: A Mathematica package to apply quantifier
elimination technology to economics.
In Proc. ICMS 2018, LNCS 10931, pages 369–378. Springer,
2018.
URL: https://doi.org/10.1007/978-3-319-96418-8_44.
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Satisfiability in NRA (Slide 44/58)

We now consider the problem of determining the satisfiability of a
formula in Non-linear Real Arithmetic (NRA). I.e. to evaluate

∃x1, ∃x2, . . . , ∃xnF (x1, x2, . . . , xn)

as either True (SAT) or False (UNSAT) where F is a formula in
Boolean logic (atoms connected by ∧, ∨, ¬) whose atoms are sign
constraints on non-linear multivariate polynomials with integer
coefficients. (Usually assume F is in conjunctive normal form.)

This is a sub-problem of Real QE and thus can be solved by CAD
etc. But this problem has lower (single exponential) complexity.

A sign-invariant CAD for the polynomials in F can be used to solve
any such problem, regardless of the particular Boolean structure
involved. How to adapt CAD to take note of the logic?
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The SMT Approach (Slide 45/58)

One approach to such satisfiability problems is to separate out the
logic from the arithmetic theory.

Allow the logical structure to be explored by a SAT Solver.
Have the solutions proposed be tested in the theory of interest
by relevant software for that domain: a Theory Solver.

The Theory Solver need only test the consistency of a set of
constraints (no Boolean logic).

This approach is called Satisfiability Modulo Theories (SMT).
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Why the SMT Approach? (Slide 47/58)

To take advantage of the incredible progress in SAT solvers!
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CAD as NRA Theory Solver (Slide 48/58)

We can use CAD as SMT NRA theory solver but it must be
adapted for this use:

Incrementality: Add a constraint and divide cells.
Backtracking: Remove a constraint and merge cells.
Explanations: When no cell satisfies constraints identify
minimal subset of constraints which are mutually unsatisfiable.

G. Kremer and E. Ábrahám.
Fully incremental cylindrical algebraic decomposition.
J. of Symbolic Computation, 100, pages 11–37. Elsevier, 2020.
https://doi.org/10.1016/j.jsc.2019.07.018

(Q) Why is SAT solver + CAD better than CAD alone?
(A) Because in SMT a theory solver commonly only addresses a
small subset of the total constraints.
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How good is this approach? (Slide 49/58)

For problems where the solution is SAT this approach tends to
determine the solution much faster than CAD alone as it can
terminate earlier when a satisfying witness is discovered.

For UNSAT problems this approach can still be faster if it allows to
reach the conclusion by studying multiple smaller problems; but it
may still require the computation of some very large
decompositions.

How to adapt CAD further to avoid this?
Try to follow the success of SAT-solvers which search the sample
spaces by: making guesses, propagating, and generalising conflicts
to avoid similar parts of the search space.
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Conflict Driven Cylindrical Algebraic Covering (Slide 50/58)

E. Ábrahám, J.H. Davenport, M. England and G. Kremer.
Deciding the consistency of non-linear real arithmetic
constraints with a conflict driven search using cylindrical
algebraic coverings.
JLAMP 119, pages 2352-2208. Elsevier, 2021.
https://doi.org/10.1016/j.jlamp.2020.100633

Features:
Search based: choose sample point and if not satisfying build
cell around it using CAD technology.
Cells form covering of Rn instead of decomposition.
Can use far fewer cells!
Cells are still arranged in cylinders making projection easy.
Conflict Driven search guides away from past conflicts.
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CDCAC: Basic Idea (Slide 51/58)

Pick sample for lowest variable in ordering.
Extend to increasingly higher dimensions in reference to those
constraints made univariate.
If all constraints satisfied then conclude SAT.
If a constraint cannot be satisfied generalise to CAD cell in
current dimension.
Search outside the cell in that dimension.
If entire dimension covered by cells then generalise to rule out
cell in dimension below using CAD projection.
Conclude UNSAT when covering for lowest dimension
obtained.

Following slides by Gereon Kremer show simple example.

M. England Real QE: Progress and Applications
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CDCAC in cvc5 (Slide 52/58)

cvc5 is a popular open-source SMT-solver used by prominently in
academia and industry (e.g. Amazon Web Services). It won the
2022 SMT Competition overall, and the QFNRA track. cvc5 used
CDCAC as the core algorithm for non-linear real arithmetic.

G. Kremer, A. Reynolds, C. Barrett, and C. Tinelli.
Cooperating techniques for solving nonlinear real arithmetic in
the cvc5 SMT solver (system description),
In: Automated Reasoning, (LNCS 13385), pages 95-105.
Springer International Publishing, 2022.
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Symbolic Computation VS Machine Learning (Slide 53/58)

Machine Learning (ML) can use statistics and big data to learn
how to perform tasks that have not been explicitly programmed.

(Q) So can ML replace symbolic computation?

There is a growing body of research on the use of ML in place of
expensive symbolic computation. E.g. for the solution of
differential equations.

However, like many ML applications, there are issues of
over-fitting: where the ML does very well on the data used to train
it but poorly on different data. Unlike other ML applications it is
not always obvious which data is similar to the training data.

ODE solving is well suited because it is cheap to symbolically
check the correctness of the answer. This is not the case for most
symbolic computation.

M. England Real QE: Progress and Applications



The Real QE Problem
Some Recent Applications

New Algorithmic Developments

Redesigning CAD for SMT
Machine Learning for Real QE

Symbolic Computation WITH Machine Learning (Slide 54/58)

ML can only offer probabilistic guidance, but symbolic
computation prizes exact results. 99% accuracy is great for image
recognition but would not be acceptable for a mathematical proof.

However: ML can be applied to symbolic computation and still
ensure exact results; by having it guide existing algorithms rather
than replace them entirely.

Symbolic Computation algorithms will often come with choices
that need to be made but which do not effect the mathematical
correctness of the final result; but do effect the resources required
to find that result, and how the result is presented.

Such choices are often either left to the user, hard coded by the
developer, or made based on a simple heuristic. ML may be able to
offer a superior choice.
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Example: Variable Ordering for Quantifier Elimination
(Slide 55/58)

CAD requires a variable ordering: there can be multiple valid
orderings which lead to an acceptable decomposition, but some
lead to smaller decompositions via less computation.
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This is INTERESTING Machine Learning (Slide 56/58)

So ML has great potential for Symbolic Computation. But note
this is also a particularly challenging / interesting ML domain:

No a priori limit on the input space.
Supervised learning hard: because labelling dataset needs lots
of expensive symbolic computation.
Unsupervised learning is hard: because it is unclear if a
particular outcome is good or bad without seeing the
competition!
What constitutes a meaningful and representative data set?
Insufficient quantities of real world data for deep learning.
How to perform data augmentation / synthetic data
generation to allow for good generalisability on problems of
interest?
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Beyond Efficiency Gains (Slide 57/58)

D. Peifer, M. Stillman, and D. Halpern-Leistner.
Learning selection strategies in Buchberger’s algorithm,
In: Proc. ICML 2020, pages 7575-7585, PMLR, 2020.

Applied reinforcement learning to choose the order in which to
process S-pairs in Buchberger’s algorithm for a Gröbner Basis.

Human analysis of their model revealed a simple, “human level”
strategy that explained most of the choices. Simple, but very
different the human-designed heuristics.

Suggests that ML can reveal new mathematical truths about the
algorithm, and direct future non-ML algorithm development. But
how to automate the analysis?
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Recent work on XAI for QE variable ordering (Slide 58/58)

L. Pickering, T. Del Rio Almajano, M. England and K. Cohen.
Explainable AI Insights for Symbolic Computation: A case
study on selecting the variable ordering for cylindrical algebraic
decomposition.
In Press: Journal of Symbolic Computation, 2023.

We applied the SHAP XAI tool to analyse the features used in a
CAD ML-based variable ordering classifier. Some identified as
impactful had been known before but others were new.

Next constructed non-ML heuristics from trio’s of these features,
in a similar design to prior human-designed heuristics. The best of
these outperform’s the state-of-the-art on standard benchmarks.

Demonstrates the potential for XAI as an exploratory tool in
human optimisation of symbolic computation algorithms.
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Contact Details
Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/

Thanks for Listening
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