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Motivation

• Growing interest in using Machine Learning in symbolic

computation.

• Huge amounts of data are needed and ”real-world” objects are

limited.

• Some papers have been criticized for using random data

because it is believed that random and ”real-world” objects

behave in a different way.

• We wanted to study how to generate synthetic data that

behaves similarly to ”real-world” data.
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What we did

• Create a tool to study how similar random and synthetic
problems were to ”real-world” problems.

• Extract univariate polynomials from the problems using CAD

projection.

• Compute the number of real roots of these polynomials

counting multiplicity.

• Use the bootstrap method to determine if the number of real

roots in two different families follow a similar distribution.

• We wanted to compare families from different origins but in

the process we observed that families of real-world problems

are very different to each other.
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Obtaining families of problems

• ”Real-world” problems: QF NRA category of the SMT-LIB

(ex: Geogebra and meti-tarski).

• Synthetic problems: Using randpoly() conserving some

features of the ”real-world” problems (ex: random Geogebra).

• Random problems: Using randpoly() (ex: random and

meti-tarski).
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Comparing two samples of the number of real roots

Basically there are two list of numbers and we want to determine if

they were generated using the same distribution.

Hypothesis: Sample 1 and Sample 2 were generated by the same

distribution Distribution 1.

• Auxiliary Sample is extracted from Distribution 1.

• The probability of both Sample 2 and Auxiliary Sample are
compared.

• If Sample 2 is more probable than Auxiliary Sample that

indicates is likely that the hypothesis is true.

• Else that indicates the hypothesis might not be true.

• This is repeated many times replicating the idea of the

bootstrap method Freund et al. 1995 to get a closer idea of

how likely is that the hypothesis is true.
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Results

The numbers in this table represent the certainty to discard that

the named family is the same as ”Geogebra”.

Degree Geogebra random-
Geogebra random meti-

tarski

2 0.45272 0.80008 0.91754 1.00000

3 0.45784 0.78931 0.67135 0.99998

4 0.45102 0.93661 0.85620 1.00000

5 0.45556 0.81697 0.99783 1.00000

6 0.42942 0.82243 0.99983 1.00000

7 0.43385 0.93313 0.97233 0.99888

8 0.42578 0.99090 0.99971 1.00000

The bigger the number the more evidence that the samples come from different

distributions. It is standard to discard the hypothesis if higher than 0.95.
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Main conclusions

• Conserving features from the original family results in

similarities on the distribution of the number of real roots.

• There is no such a thing as the properties of the ”real-world”

polynomials. The QF NRA collection is quite heterogeneous.

• This, together with the imbalance of this collection implies

that one should be very careful when training a Machine

Learning model on it.
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If there is a paper... and future directions

• A more exhaustive analysis of how heterogeneous the

QF NRA collection is.

• How much the distribution of the number of real roots

changes when different features are conserved.

• Possible solutions to the imbalance and heterogeneity of the

QF NRA and other collections.

• Comparing the performance on ”real-world” data of models

trained with ”real-world”, synthetic and random data.
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