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Overview (Slide 1/43)

Summary: the talk will describe the Real Quantifier Elimination
Problem and the Cylindrical Algebraic Decomposition method to
tackle it. We will cover recent developments the author has been
involved in that improve CAD with ideas from (a) satisfiability
checking; (b) proof systems; and (c) machine learning.

Key message: connections between different areas of
mathematics / computer science allow for unexpected progress.

Joint work with: Chris Brown, Erika Abraham, Russell Bradford,
Kelly Cohen, James Davenport, Tereso del Rio, Gereon Kremer,
Lynn Pickering, Jasper Nalbach, AmirHosein Sadeghi Manesh and
Philippe Specht.
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Real QE (Slide 2/43)

Real Quantifier Elimination (Real QE)

Given: A quantified formulae (in prenex normal form) whose
atoms are (integral) polynomial constraints;
Produce: a quantifier free formula logically equivalent over R.

Fully quantified examples:

Input: Ix, x> +3x+1>0
Output: True e.g. when x =0
Input: Vx, x> +3x+1>0
Output: False e.g. when x = —1
Input: Vx,x>+1>0
Output: True
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Real QE (Slide 2/43)

Real Quantifier Elimination (Real QE)

Given: A quantified formulae (in prenex normal form) whose
atoms are (integral) polynomial constraints;
Produce: a quantifier free formula logically equivalent over R.

Fully quantified examples:

Input: Ix, x> +3x+1>0
Output: True e.g. when x = 0 Partially quantified example:
Input: Vx, x> +3x+1>0 Input: Vx,x% 4+ bx +1>0
Output: False e.g. when x = —1 Output: 777
Input: Vx, x* +1 >0 The answer depends on the free
Output: True (unquantified) variable, b.
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Partially quantified Tarski formulae example (Slide 3/43)

Consider Vx,x? + bx +1 > 0.
When b =0 and b = 3:

Vx, x> 41> 0is True,
Vx,x? +3x+1>0is False.

So in general the answer
depends on b.

Input: Vx, x>+ bx +1>0
Output:
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Partially quantified Tarski formulae example (Slide 3/43)

Consider Vx,x? + bx +1 > 0.
When b =0 and b = 3:

Vx,x>4+1>0is True ,
Vx, x> +3x+1>0is False .

I b=-3

So in general the answer
depends on b.

Input: Vx, x>+ bx+1>0
Output:
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Consider Vx,x? + bx +1 > 0.
When b =0 and b = 3:

Vx, x> 41> 0is True,
Vx,x%> +3x +1> 0 is False.
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Output:
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Partially quantified Tarski formulae example (Slide 3/43)

Consider Vx,x? + bx +1 > 0.

When b =0 and b = 3:
Vx, x> 41> 0is True,

Vx,x%> +3x +1> 0 is False.

So in general the answer
depends on b.

Input: Vx, x>+ bx +1>0
Output: (=2 < b)A(b<2)

The technology we look at
today can answer such
questions automatically.
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Numeric vs. Symbolic solution? (Slide 4/43)

The solution in the previous slide was essentially numeric: try what
happens for many different values and interpolate a solution.

The alternative is to use Symbolic Computation: algorithms and
data-structures for manipulating exact mathematical expressions
and objects. Traditionally implemented in Computer Algebra
Systems (e.g. Macaulay2, Maple, Mathematica, Sage).
Advantages of Symbolic Computation:

@ Can solve numerically ill-conditioned problems.

@ Provide guarantees for safety critical systems.

@ Provide fundamental insight into the system.

Disadvantage of Symbolic Computation: much more expensive!
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Cylindrical Algebraic Decomposition (Slide 5/43)

A Cylindrical Algebraic Decomposition (CAD) is:

@ a decomposition of R” into a set of cells C;

(ie. Ui Gi=R"and G;N G =0 if i # j) such that:

@ cells are semi-algebraic meaning they may be described by a
finite sequence of polynomial constraints;

@ cells are cylindrical meaning the projection of any two onto a
lower coordinate space in the variable ordering are identical or
disjoint (i.e. the cells in R™ stack up in cylinders over cells
from CAD in R™1).

[ G.E. Collins.
Quantifier elimination for real closed fields by cylindrical

algebraic decomposition.
In Proc. 2nd Gl Conf. Automata Theory and Formal
Languages, pp. 134—183. Springer-Verlag, 1975.
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CAD Invariance Property (Slide 6/43)

CAD may also refer to an algorithm that produces the CAD object.

The traditional CAD algorithm introduced by Collins in the 1970s
takes a set of input polynomials and produces a CAD such that
each polynomial has constant sign in each cell: this additional
property is called sign-invariance.

Such a CAD allows us to uncover properties of polynomials over
infinite space by examining finite set of sample points.
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CAD Invariance Property (Slide 6/43)

CAD may also refer to an algorithm that produces the CAD object.

The traditional CAD algorithm introduced by Collins in the 1970s
takes a set of input polynomials and produces a CAD such that
each polynomial has constant sign in each cell: this additional
property is called sign-invariance.

Such a CAD allows us to uncover properties of polynomials over
infinite space by examining finite set of sample points.

Most applications (e.g. QE) actually provide as input a logical
formulae built from polynomial constraints and require as output a
truth-invariant CAD: one such that each formula has constant
truth value in each cell.

Such a CAD allows us to find solution sets from the descriptions of
true cells: semi-algebraic; easy to visualise and check membership.
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Example: Circle — visualisation

(Slide 7/43)

Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell

Cell

Cell 10:
Cell 11:
Cell 12:

Cell 13:

LA e

8:

9:

1 x < —1, y free
x=-1y<0
x=-1y=0
x=-1,y>0

-l<x<l,

V2 4x2—1>0,y <0

r-l<x <,

Yy 4+x2—1=0,y <0

-l x <l

y24+x2-1<0
—1l<x<1,

V2 4+x2—=1=0,y >0
—1<x<1,

¥ 4+x2—1>0,y >0

x=1y<0
x=1y=0
x=1y>0
x> 1, y free
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Cell 1
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Cell 3:
Cell 4:
Cell 5
Cell 6
Cell 7
Cell 8:
Cell 9:
Cell 10:
Cell 11:
Cell 12:
Cell 13:

1 x < —1, y free
x=-1y<0
x=-1Ly=0
x=-1,y>0

t-l<x <1,

V2 4+x2—1>0,y<0

r-l<x <,

YV +x2—1=0,y<0

-l x <,

y24+x2-1<0
-1<x<1,

Y2 4+x2—1=0,y >0
—1<x<1,
V+x2—1>0,y>0

x=1y<0
x=1y=0
x=1y>0
x> 1, y free
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Example: Circle — visualisation (Slide 7/43)
Cell 1: x < —1, y free
Cell 2: x=-1,y<0 2
Cell 3: x=-1,y=0
Cell 4: x=-1,y>0
Cell 5: -1 <x<1,

V2 4+x2—1>0,y<0
Cell 6: -1 <x<1,

YV +x2—1=0,y<0
Cell 7: -1 <x<1,

y24+x2-1<0
Cell 8: -1<x<1,

Y2 4+x2—1=0,y >0
Cell 9: -1 <x<1,

V+x2—1>0,y>0
Cell 10: x=1,y <0
Cell1l: x=1,y =0
Cell 12: x=1,y >0 o)
Cell 13: x > 1, y free
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1 x < —1, y free
tx=-1,y<0
x=-1Ly=0
tx=-1,y>0
t-1l<x<1,

Vv 4+x*—1>0,y<0
1< x<1,

Y2 4x2—1=0,y <0
-1 <x<1,
y24+x2-1<0
-1<x<1,

Y2 4+x2—1=0,y >0
—1<x<1,

¥ 4+x2—1>0,y >0

x=1y<0
x=1y=0
x=1y>0
x> 1, y free
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How to build a CAD? (Slide 8/43)

The usual approach is to calculate projection polynomials whose
roots indicate changes in the behaviour of the input set;
decompose with respect to these and then lift back working at a
sample point. Sound if the projection provides delineability.

X
¢ O ; J :Ci /_> x

Image from Chris
Brown's 2017 SC-

= Square Summer
- School Lecture
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How to determine with CAD?

Ix, x>+ bx+1<0
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How to determine with CAD?

Ix, x>+ bx+1<0

To solve we:

Build a sign-invariant CAD for
f=x>+bx+1.
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(Slide 9/43)

How to determine with CAD?
Ix, x>+ bx+1<0

To solve we:

Build a sign-invariant CAD for
f=x>+bx+1.

Tag each cell true or false
according to f < 0.

M. England
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(Slide 9/43)

How to determine with CAD?
Ix, x>+ bx+1<0

To solve we:

Build a sign-invariant CAD for
f=x>+bx+1.

Tag each cell true or false
according to f < 0.

Take disjunction of projections of
true cells:

b< -2Vhb=-2
Vb=2Vh>2
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(Slide 9/43)

How to determine with CAD?
Ix, x>+ bx+1<0

To solve we:

Build a sign-invariant CAD for
f=x>+bx+1.

Tag each cell true or false
according to f < 0.

Take disjunction of projections of
true cells:

=
b<-2Vvb>2

M. England
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QE via CAD in General (Slide 10/43)

In general we can perform Real QE on a decomposition as follows.

o Eliminate existential quantifiers by projecting the true cells,
as in the previous example.

@ Eliminate universal quantifiers by using the relation
VxP(x) = =3x—P(x)

and then proceeding with existential QE.

Recall our original example was Vx, x2 + bx +1 > 0. The above
leads us to study 3x, x2 + bx 4+ 1 < 0 which from the previous slide
we know has solution b < —2V b > 42. The solution to our
universally quantified problem is then the negation of this:

—2 < bA b < +2 (as we found numerically earlier).
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Cylindricity Property (Slide 11/43)

Decompositions allow us to understand infinite space with a finite
number of samples and (semi-) algebraic cells allows us to
construct solution formulae easily. But why cylindricity?

The Real QE solution process requires us to project cells (and
combine those projections) and to calculate the complement of
cells: both of these things are trivial for cells arranged cylindrically.

x< -1
y <0
y:o}xzq
0<y

L < v
Cylindricity means we can iy A

VR I<y<V=RTT1 l<x<1

think of CAD as a tree i A
branching by variable.
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Warning: CAD Complexity (Slide 12/43)

By the end of projection you have doubly exponentially many
polynomials of doubly exponential degree (in the number of
projections, i.e. variables). Hence also the number of real roots,
cells and time to compute them grows doubly exponentially!

[§ C. Brown and J.H. Davenport.
The complexity of quantifier elimination and cylindrical
algebraic decomposition.
In Proc. ISSAC '07, pages 54-60. ACM, 2007.

Thus in practice applications are only realistic for 4 variables,
unless specific optimisations are utilised:

22 — 256 22 —65,536 22 — 4,294,967, 296
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QE via CAD Implementations (Slide 14/43)

Both of the big proprietary Computer Algebra Systems have QE
implementations: MATHEMATICA (the Resolve command) and
MAPLE (RegularChains:-SemiAlgebraicSetTools;
QuantifierElimination:-CylindricalAlgebraicDecompose;
and RootFinding:-Parametric:-CellDecomposition).

The specialist computer algebra system QEPCAD-B is dedicated to
QE via CAD and is available for free. It can be used via an
intelligent interface TARSKI, is available as a sub-package of
SAGE, and can now even run in your browser!

http://tarski.tk/

CAD implementations also exist in the SMT-solvers, SMT-RAT,
YICES2, Z3 and cvch. All are available for free — but note these
can only answer fully quantified problems.
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Alternatives to CAD for QE (Slide 15/43)

There exists algorithms to achieve Real QE other than via CAD:
@ Virtual Term Substitution: more efficient but degree
limitations. Implementations in MATHEMATICA and
REDLOG.
@ QE via Comprehensive Grobner Bases: more efficient,
especially if there are many equations. Implementation in
SYNNRAC package for MAPLE.
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Alternatives to CAD for QE (Slide 15/43)

There exists algorithms to achieve Real QE other than via CAD:

@ Virtual Term Substitution: more efficient but degree
limitations. Implementations in MATHEMATICA and
REDLOG.

@ QE via Comprehensive Grobner Bases: more efficient,

especially if there are many equations. Implementation in
SYNNRAC package for MAPLE.

e Family of algorithms for Real QE with complexity doubly
exponential in the number of quantifier eliminations. No
implementations and analysis suggests that the crossover
point where the asymptomatic growth becomes relevant is to
far away for practical use at the moment.

@ Variety of specialist Real QE algorithms for input of certain
shape.
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Alternatives to CAD for QE References

[

T. Sturm.
Thirty years of virtual substitution: Foundations, techniques, applications.
In Proc. ISSAC 2018, pages 11-16, ACM, 2018.

R. Fukasaku, H. lwane, and Y. Sato.

Real quantifier elimination by computation of comprehensive Grébner
systems.

In Proc. ISSAC '15, pages 173-180. ACM, 2015.

J. Renegar.

Recent progress on the complexity of the decision problem for the reals.
In B.F. Caviness and J.R. Johnson, editors, Quantifier Elimination and
Cylindrical Algebraic Decomposition, pages 220-241. Springer-Verlag,
1998.

H.P. Le and M. Safey El Din.
Faster one block quantifier elimination for regular polynomial systems of

equations.
In Proc. ISSAC '21, pages 265-272. ACM, 2021.
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Real QE Applications (Slide 16/43)

QE can solve problems throughout engineering & science. E.g.
@ derivation of optimal numerical schemes.

artificial intelligence to pass university entrance exam.

°
@ automated theorem proving.
@ automated loop parellisation.
°

structural design (minimising the weight of trusses).

There is no lack of potential applications: the problem is scaling
up in the face of high complexity!
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QE Applications References

@ M. Erascu and H. Hong.
Real quantifier elimination for the synthesis of optimal numerical algorithms
(Case study: Square root computation).
Journal of Symbolic Computation, 75:110-126, 2016.

N.H. Arai, T. Matsuzaki, H. lwane, and H. Anai.
Mathematics by machine.
In Proc. ISSAC '14, pages 1-8. ACM, 2014.

L.C. Paulson.
Metitarski: Past and future.
In Proc ITP "12, pages 1-10. Springer, 2012.

A. Grosslinger, M. Griebl, and C. Lengauer.
Quantifier elimination in automatic loop parallelization.
Journal of Symbolic Computation, 41(11):1206-1221, 2006.

) & W &

A.E. Charalampakis and |. Chatzigiannelis.

Analytical solutions for the minimum weight design of trusses by cylindrical
algebraic decomposition.

Archive of Applied Mechanics, 88(1):39-49, 2018.
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Chemical Reaction Networks (Slide 17/43)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1+X2L-3X1£>X1+2X2£>3X2.
S

ka
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Chemical Reaction Networks (Slide 17/43)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1+X2£>3X1£>X1+2X2£>3X2.
S

ka

From this we define a dynamical system:

X1 = (3 = 2)kixixixo — 2koxi — kaxyx3 + 2kax3,
Xp = —kixZxp + 2koxd + kax1x2 — 2kaxs.
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Chemical Reaction Networks (Slide 17/43)

A Chemical Reaction Network (CRN) models the behaviour of a
chemical system. Toy Example:

2X1+X2£>3X1£>X1+2X2£>3X2.
S

ka

From this we define a dynamical system:

X1 = (3 = 2)kixixixo — 2koxi — kaxyx3 + 2kax3,
Xp = —kixZxp + 2koxd + kax1x2 — 2kaxs.

Steady states when all the derivatives are zero:

k1X12X2 — 2k2Xf’ — /(3X1X22 + 2/(4X§ = 07
x1 +x — ks = 0.

Parametric real semi-algebraic geometry problem.
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Multistationarity (Slide 18/43)

A CRN exhibits multistationarity if there exists a choice of
parameter values for which the system has more than one
(positive real) solution.
Why care about multistationarity?

@ Used for switch behaviour.

@ Instrumental to cellular memory and cell differentiation during
development.

@ Used by micro organisms in survival strategies.
@ Used in decision making processes in the cell division cycle.

There are a variety of efficient methods for answering the Boolean
question as to whether or not a system can exhibit
multistationarity. Less studied is the question of determining the
actual parameter values where multistationarity occurs.
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Numeric Methods for Multistationarity 1 (Slide 19/43)

Numeric sampling of the parameter space is used. However:
@ Incorrect results can be obtained at ill-conditioned points.

@ No guarantee all areas of interest will be sampled.

10007 = = = = = = = 10007 = = = = = = =
e = = = = = @ = = o= o= o= o= =
9004 = & = = = = @ 90/ = = = = = = =
L] - L] - L] - L] L] - - L] L]
8001 = = = = = = 801 = = = = = =
= e = = x " s o= o=
7004 = = = = e . 701 = = = = =
P . = = = o=
k19 60 = = & = . k19 600f = = = =
L] - - L] L] -
5001 = ® @ 501 = = =
= . - = .
4004 = - - 4004 =
. .
300 . - 300
200 200
80 100 120 140 160 180 200 80 100 120 140 160 180 200
k17 k17
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Numeric Methods for Multistationarity 2 (Slide 20/43)

Numeric sampling of the parameter space is used. However:
@ Incorrect results can be obtained at ill-conditioned points.
@ No guarantee all areas of interest will be sampled.

0.5 0.4020

0 T T T T T T T T
0 001 0.02 0.03 004 005 006 007 008 009 0.0560 0.0565 0.0570
a a

Image courtesy of AmirHosein SadeghiManesh,
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Biology Example References

@ R. Bradford, J.H. Davenport, M. England, H. Errami, V. Gerdt,
D. Grigoriev, C. Hoyt, M. Kosta, O. Radulescu, T. Sturm, and A. Weber.

Identifying the parametric occurrence of multiple steady states for some
biological networks.

Journal of Symbolic Computation, 98:84-119, 2020.

[3 D. Lazard and F. Rouillier.
Solving parametric polynomial systems.
Journal of Symbolic Computation, 42(6):636—667, 2007.

@ G. Rést and A. Sadeghimanesh.
Exotic bifurcations in three connected populations with Allee effects.
International Journal of Bifurcation and Chaos, 31(13):2150202, 2021.

@ A. Sadeghimanesh and M. England.

Polynomial Superlevel Set Representation of the Multistationarity Region
of Chemical Reaction Networks.

BMC Bioinformatics, 23 Article number 391, 26 pages, 2022.
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Framework for Reasoning in Economics (Slide 21/43)
Determine whether, with variables A = (v1, ..., v,), the hypotheses

H(A) follow from the assumptions A(A). l.e. answer
VA.A(N) = H(N)?

Logically the answer must be True or False. But economists are
interested also in the following:

@ Are the assumptions themselves contradictory?
o If False, can additional assumptions be made to give True?
@ If True, can any assumptions be removed?

Such questions can be answered by Real QE in many cases.
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TheoryGuru Framework (Slide 22/43)

THEORYGURU package for MATHEMATICA led by Casey Milligan
(Chicago). For a proposed economics theorem, we check both:

@ the existence of an example
IN,AANH,

@ and the existence of a counterexample
N, AN -H.

Then categorize the proposed theorem as:

\ —3IN, AN -H IN, AN -H
dNAANH True Mixed
-3IN,ANH Contradictory Assumptions False

An economist can explore: e.g. strengthen assumptions of Mixed
result, or weaken assumptions of True result.
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Example #0013 Context (Slide 23/43)

Context: Disagreement between Mulligan and
Krugman on causes of recession. In particular,
latter asserted that whenever taxes on labour
supply are primarily responsible for a recession
then wages increase. Benchmark Example
#0013 considers this claim.
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Example #0013 Context

(Slide 23/43)

Context: Disagreement between Mulligan and
Krugman on causes of recession. In particular,
latter asserted that whenever taxes on labour
supply are primarily responsible for a recession
then wages increase. Benchmark Example
#0013 considers this claim.

Two scenarios to track: what actually happens
(act) when taxes (t) and demand forces (a)
together create a recession, and what would
have happened (hyp) if taxes on labour supply
had been the only factor affecting the market.

The labour demand and supply functions D(w, a) and S(w, t) meet
at the labour market equilibrium to supply quantity of labour q.
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(Slide 24/43)

a=90Wwa) o, 05w.t)
ow ow
A 8D(8vav, a) 1A 85(5:, t) _1
A %(D(W, a)=q=5(w,t))
A (D(w.) = g = S 1)

A dt _ dt A da _0
dact dhyp dhyp
dg _1dg.
dhyp 2 dact
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(Slide 24/43)

a=90Wwa) o, 05w.t)
ow ow
A 3D(8V;, a) 1A 85(6V:, t) _1
A %(D(W, a)=q=5(w,t))
A (D(w.) = g = S 1)

A dt _ dt A da _0
dact dhyp dhyp
dg _1dg.
dhyp 2 dact

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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(Slide 24/43)

A= ODKW,a) <OA 05{(W. t) 50
ow ow
A 3D(8M;, a) 1A 85(6V:, t) _1
A %(D(W, a)=q=5(w,t))
A dh;dyp(D(W’ a)=q=5(w,t))

A dt _ dt A da _0
dact dhyp dhyp
dg _1dg
dhyp 2 dact

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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(Slide 24/43)

A dD(w, a) <OA 0S(w, t) -0
ow ,aW
A %(D(W, a)=q=5(w,t))
A dh;dyp(D(W’ a)=q=5(w,t))

A dt _ dt A da _0
dact dhyp dhyp
dg _1dg.
dhyp 2 dact

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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(Slide 24/43)

A= OD(w, a) <OA OS(w, t) 50
ow ow
A 8D(8vav, a) 1A 85(5:, t) _1
A %(D(W, a)=q=5(w,t))
A dhLyp(D(W., a)=q=5(w,t))

Ld_drda o
dact  dhyp = dhyp

dq 1 dq
dhyp 2 dact
dw
— >0
dact -

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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(Slide 24/43)

A= OD(w, a) <OA OS(w, t) 50
ow ow
A 8D(8vav, a) 1A 85(5:, t) _1
A %(D(W, a)=q=5(w,t))
A dh;dyp(D(W’ a)=q=5(w,t))

A dt _ dt A da _0
dact dhyp dhyp
dg _1.dg
dhyp 2 dact

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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(Slide 24/43)

a=90Wwa) o, 05w.t)
ow ow
A 3D(8M;, a) 1A 85(5:, t) _1
A %(D(W, a)=q=5(w,t))
A (D(w.) = g = S 1)

A dt _ dt A da _0
dact dhyp dhyp
dqg _1.dg
dhyp 2 dact

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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(Slide 24/43)

A= OD(w, a) <OA OS(w, t) 50
ow ow
A 3D(8M;, a) 1A 85(6V:, t) _1
A %(D(W, a)=q=5(w,t))
A dh;dyp(D(W’ a)=q=5(w,t))

A dt _ dt A da _0
dact dhyp dhyp
dg _1dg
dhyp 2 dact

M. England

Assumptions:
@ Usual slope restrictions.
@ Standard normalizations.

@ Scenarios both move labour
market equilibrium over
course of recession.

@ Scenarios have the same
tax change but only the act
scenario has a demand shift.

@ Majority of the reduction in
labour was due to supply.

Hypothesis: wages are higher at
the end of the recession.
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Example #0013 Result (Slide 25/43)

We may view this as a Tarski formula in 12 variables,

[ da da dt dt
N {dact7 dhyp’ dact’ dhyp’
dg dg dw dw
dact’ dhyp’ dact’ dhyp’
OD(w,a) 0S(w,t) OD(w,a) 0S(w,t)
da = ot 7 ow T Ow }’

Each is representing a partial derivative describing the supply and
demand function or a total derivative indicating a change over time
within a scenario.

Evaluating the two existential problems shows that both examples
and counterexamples exist: the theorem is not universally true.
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Example #0013 Exploration (Slide 26/43)

If we leave aD(.gx’a) and 85(.(9‘3;’” as free variables then QE recovers a

disjunction of three quantifier-free formulae. Two of them
contradict the assumptions, but the third, below, could be added
to A to guarantee the truth of H.

0S(w, t) S _ 0D(w, a)

ow — ow > 0.

The added assumption states that labour supply is at least as
sensitive to wages as labour demand.

The algebra and logical reasoning above is not political! Any
politics comes with whether the assumptions hold. We cannot
remove the politics, but at least gain clarity over which arguments
are political and which not.
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Economics Example References

ﬁ C. Mulligan, R. Bradford, J.H. Davenport, M. England, and
Z. Tonks.
Non-linear real arithmetic benchmarks derived from automated
reasoning in economics.
In Proc. SC? '1), CEUR-WS 2189, pages 48-60, 2018.
URL: http://ceur-ws.org/Vol-2189/

[§ C.B. Mulligan, J.H. Davenport, and M. England.
TheoryGuru: A Mathematica package to apply quantifier
elimination technology to economics.

In Proc. ICMS 2018, LNCS 10931, pages 369-378. Springer,
2018.
URL: https://doi.org/10.1007/978-3-319-96418-8_44.
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
Satisfiability in NRA (Slide 27/43)

We now consider the problem of determining the satisfiability of a
formula in Non-linear Real Arithmetic (NRA). l.e. to evaluate

Axg, Ixo, ..oy IxnF (X1, X2, -y Xn)

as either True (SAT) or False (UNSAT) where F is a formula in
Boolean logic (atoms connected by A, V, =) whose atoms are sign
constraints on non-linear multivariate polynomials with integer
coefficients. (Usually assume F is in conjunctive normal form.)

This is a sub-problem of Real QE and thus can be solved by CAD
etc. But this problem has lower (single exponential) complexity.

A sign-invariant CAD for the polynomials in F can be used to solve
any such problem, regardless of the particular Boolean structure
involved. (Q) How to adapt CAD to take note of the logic?
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The SMT Approach (Slide 28/43)

One approach to such satisfiability problems is to separate out the
logic from the arithmetic theory.

@ Allow the logical structure to be explored by a SAT Solver.

@ Have the solutions proposed be tested in the theory of interest
by relevant software for that domain: a Theory Solver.

The Theory Solver need only test the consistency of a set of
constraints (no Boolean logic involved).

This approach is called Satisfiability Modulo Theories (SMT) or
sometimes CDCL(T).
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SAT/SMT
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Why the

To take advantage of the incredible progress in SAT solvers!
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Based on a slide from Vijay Ganesh
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
Why are SAT solvers so good? (Slide 31/43)

The SAT problem is famously NP: so exponential time in the worst
case. But in seems that on average, a solution can be found much
quicker through an intelligent search algorithm.
1960s: The Davis-Putnam-Logemann-Loveland (DPLL)
algorithm explained how a mixture of propagation
and backtracking could allow large swathes of the
search space to be ruled out at once.
1990s: The Conflict-Driven Clause Learning (CDCL)
algorithm built on this by learning new conflict
clauses before backtracking: clauses implied by the
original formula that explicitly rule out a bad guesses
and others that are similar.
2000s: Extensive optimisations to CDCL; heuristics for
non-critical choices; ML meta-solvers; ML for interior
heuristics, etc.
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
CAD as an NRA Theory Solver (Slide 32/43)

We can use CAD as an SMT NRA theory solver but the
implementation must first be adapted for this use:

@ Incrementality: Add a constraint and divide cells.
o Backtracking: Remove a constraint and merge cells.

o Explanations: When no cell satisfies constraints identify
minimal subset of constraints which are mutually unsatisfiable.

[l G. Kremer and E. Abraham.
Fully incremental cylindrical algebraic decomposition.
J. of Symbolic Computation, 100, pages 11-37. Elsevier, 2020.
https://doi.org/10.1016/j.jsc.2019.07.018
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
How good is this approach? (Slide 33/43)

For problems where the solution is SAT this approach tends to
determine the solution much faster than CAD alone as it can
terminate earlier when a satisfying witness is discovered.

For UNSAT problems this approach can still be faster if it allows to
reach the conclusion by studying multiple smaller problems; but it
may still require the computation of some very large
decompositions.

(Q) How to adapt CAD further to avoid this?

(A) Try to follow the success of SAT-solvers which search the
sample spaces by: making guesses, propagating, and generalising
conflicts to avoid similar parts of the search space.
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The Real QE Problem SAT/SMT
New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation

Conflict Driven Cylindrical Algebraic Covering  (Slide 34/43)

[ E. Abraham, J.H. Davenport, M. England and G. Kremer.
Deciding the consistency of non-linear real arithmetic
constraints with a conflict driven search using cylindrical
algebraic coverings.

JLAMP 119, pages 2352-2208. Elsevier, 2021.
https://doi.org/10.1016/j.jlamp.2020.100633

Features:

@ Search based: choose sample point and if not satisfying build
cell around it using CAD technology.

o Cells gradually form a covering of R" instead of a
decomposition. Can use far fewer cells!

@ Cells are still arranged in cylinders making projection easy.

@ Conflict Driven search guides away from past conflicts.
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
CDCAC: Basic Idea (Slide 35/43)

@ Pick sample for lowest variable in ordering.

o Extend to increasingly higher dimensions in reference to those
constraints made univariate.

o If all constraints satisfied then conclude SAT.

@ If a constraint cannot be satisfied generalise to CAD cell in
current dimension.

@ Search outside the cell in that dimension.

o If entire dimension covered by cells then generalise to rule out
cell in dimension below using CAD projection.

@ Conclude UNSAT when a covering for the lowest dimension is
obtained.

Following slides by Gereon Kremer show simple example.
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
CDCAC in cvch (Slide 36/43)

cvch is a popular open-source SMT-solver used by prominently in
academia and industry (e.g. Amazon Web Services). It won the
2022 SMT Competition overall, and the QFNRA track. cvch used
CDCAC as the core algorithm for non-linear real arithmetic.

ﬁ G. Kremer, A. Reynolds, C. Barrett, and C. Tinelli.
Cooperating techniques for solving nonlinear real arithmetic in
the cvc5 SMT solver (system description).

In: Automated Reasoning, (LNCS 13385), pages 95-105.
Springer International Publishing, 2022.
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
Certificates and Verification (Slide 37/43)

In the case of satisfiability both CAD and CDCAC provide a
satisfying sample point to serve as certificate.

But in the case of unsatisfiability, one would need to verify that:
(a) the cells form a decomposition / covering (not too hard given
the cylindrical structure); and

(b) each cells satisfies the stated invariance property (difficult).
An attempt was made to formalise CAD in Coq by Cohen and
Maboubi but this was never completed.

[3 C. Cohen and A. Mahboubi.

Formal proofs in real algebraic geometry: from ordered fields to quantifier
elimination.

Logical Methods in Computer Science, 8(1):1—40, 2012.
https://doi.org/10.2168/LMCS-8(1:2)2012
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
Proofs for SMT Verification (Slide 38/43)

Machine readable proofs of unsatisfiability is a growing trend in
SMT: cvch achieves this for many theories, but not yet NRA.

@ H. Barbosa et al.
Flexible Proof Production in an Industrial-Strength SMT Solver.
Proc. IJCAR 2022, LNCS 13385, pages 15-35. Springer, 2022.
https://doi.org/10.1007/978-3-031-10769-6_3

We have hypothesised that the structure of the CDCAC search
may allow for easier extraction of such proofs as they more closely
follow normal human mathematical reasoning.

@ E. Abraham, J.H. Davenport, M. England, G. Kremer, and Z. Tonks.

New Opportunities for the Formal Proof of Computational Real
Geometry?

Proc. SC? 2020, CEUR-WS 2752, pages 178—188, 2020.
http://ceur-ws.org/Vol-2752/
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
Proof System for cylindrical cell (Slide 39/43)

Recently, we presented an algorithm to produce a single CAD cell
as a proof system: properties of cells and rules of inference to infer
that such a property holds.

The algorithm then simply searches for a chain of proof rules to
prove a desired property (employing heuristics to take choices
where there is freedom in how the chain can to be built).

@ J. Nalbach, E. Abraham, P. Specht, C.W. Brown, J.H. Davenport, M.
England.
Levelwise construction of a single cylindrical algebraic cell.
Journal of Symbolic Computation, 123, Article Number 1022882023,
2024.
https://doi.org/10.1016/j.jsc.2023.102288
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The Real QE Problem SAT/SMT

New Algorithms via Computational Logic Conflict driven cylindrical algebraic covering
Final Thoughts A proof system presentation / implementation
Proof System Presentations (Slide 40/43)

Unlike traditional pseudo-code, a proof system presentation clearly
separates out the parts of the algorithm upon which correctness
rests, from those parts where heuristic decisions may be taken. It :

@ allows for cleaner proofs of correctness; and

@ more structured experimentation to optimise the heuristics.

Such presentation is prevalent in the SAT /SMT /logic communities
where there is more intense work on the optimization of such
heuristic choices. Rarely used in computer algebra: but our paper
shows there are potential benefits to it, especially for large complex
algorithms like CAD.

M. England Recent Developments in Real QE



Q The Real QE Problem
@ Quantifier Elimination
@ Real QE via CAD

@ Applications
@ Biology
@ Economics

© New Algorithms via Computational Logic
e SAT/SMT

@ Conflict driven cylindrical algebraic covering
@ A proof system presentation / implementation
© Final Thoughts

@ Open questions in CAD / QE
@ Optimised Algorithms via Machine Learning

«40>» «Fr» «=» <«

it
-
[y

DA



Q The Real QE Problem
@ Quantifier Elimination
@ Real QE via CAD

@ Applications
@ Biology
@ Economics

© New Algorithms via Computational Logic
e SAT/SMT

@ Conflict driven cylindrical algebraic covering

@ A proof system presentation / implementation
© Final Thoughts

@ Open questions in CAD / QE

@ Optimised Algorithms via Machine Learning

«40>» «Fr» «=» <«

it
-
[y

DA



The Real QE Problem
New Algorithms via Computational Logic
Final Thoughts

Geometric CAD (Slide 41/43)

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

@ Rizeng Chen.

Geometric Fiber Classification of Morphisms and a Geometric Approach to
Cylindrical Algebraic Decomposition.

Preprint, arXiv:2311.10515 (Dec 2023).
https://doi.org/10.48550/arXiv.2311.10515

Gives an algebraic geometry study of CAD. Leads to an alternative
algorithm relying on GB calculations instead of the resultant
calculations of traditional CAD. lterated resultants known to
capture many spurious solutions compared to GB; so this is
potentially much faster!

Challenges: check validity; extend 50 years of CAD optimisations
to this new framework?
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The Real QE Problem
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Block CAD and Block QE (Slide 42/43)

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

CAD (both traditional and geometric) works incrementally one
variable at a time. Can we instead work in blocks: projecting and
lifting multiple dimensions at a time? E.g. when we have multiple
equational constraints?.

@ S. McCallum and C.W. Brown.

On delineability of varieties in CAD-based quantifier elimination with two
equational constraints.

In Proceedings ISSAC 2009, pages 71-78, 2009.
https://doi.org/10.1145/1576702.1576715

@ J.H. Davenport, M. England, S. McCallum, and A.K. Uncu.
Iterated Resultants and Rational Functions in Real Quantifier Elimination.

Submitted, 2024. Preprint: arXiv:2312.16210.
https://doi.org/10.48550/arXiv.2312.16210

Can the geometric lens help with this?
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Summary In One Slide (Slide 43/43)

@ The variable ordering of CAD has a huge effect on its
practical efficiency.

@ Machine learning models may be trained to choose the
ordering better than any human-designed heuristic.

@ Although naturally a classification problem (choosing one
ordering from a discrete set of possibilities) performance can
be improved by recasting as a regression problem (predicting
the time of an ordering and going with the lowest prediction).

@ Explainable Al techniques can allow us to analyse the output
of such ML models and form new human-level heuristics that
run independent of Al.
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If you would like to know more. ..

Advert

| will give another talk at Warwick in the
Computational Algebraic Geometry Research
Network meeting on 21 — 22 March 2024.

| will talk more on the ML details of the work there.

https://sites.google.com/view/
computationalalgebraicgeometry/warwickmeeting2024
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Thanks for Listening

Contact Details

Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/
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Symbolic Computation vs Machine Learning (Slide 46/43)

Machine Learning (ML) can use statistics and big data to learn
how to perform tasks that have not been explicitly programmed.

(Q) So can ML replace symbolic computation?
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Symbolic Computation vs Machine Learning (Slide 46/43)

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

Machine Learning (ML) can use statistics and big data to learn
how to perform tasks that have not been explicitly programmed.

(Q) So can ML replace symbolic computation?

There is a growing body of research on the use of ML in place of
expensive symbolic computation. E.g. for the solution of
differential equations.

ODE solving is well suited because it is cheap to symbolically
check the correctness of the answer. This is not the case for most
symbolic computation.

ML can only offer probabilistic guidance, but symbolic
computation prizes exact results. 99% accuracy is great for image
recognition but would not be acceptable for a mathematical proof.

M. England Recent Developments in Real QE



The Real QE Problem
New Algorithms via Computational Logic
Final Thoughts

Symbolic Computation WITH Machine Learning (Slide 47/43)

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

ML can be applied to symbolic computation and still ensure exact
results; by having it guide existing algorithms rather than replace
them entirely.

Symbolic Computation algorithms often come with choices that
need to be made, which do not effect the mathematical correctness
of the final result, but which do effect the resources required to
find that result (and often how the result is presented).

Such choices are often either left to the user, hard coded by the
developer, or made based on a simple heuristic. ML may be able to
offer a superior choice.
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This is INTERESTING Machine Learning (Slide 48/43)

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

So ML has great potential for Symbolic Computation. But note
this is also a particularly challenging / interesting ML domain:

@ No a priori limit on the input space.

@ Supervised learning hard: because labelling dataset needs lots
of expensive symbolic computation.

@ Unsupervised learning is hard: because it is unclear if a
particular outcome is good or bad without seeing the
competition!

@ What constitutes a meaningful and representative data set?
@ Insufficient quantities of real world data for deep learning.

@ How to perform data augmentation / synthetic data
generation to allow for good generalisability on problems of
interest?
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Open questions in CAD / QE
Example: Variable Ordering for CAD

Optimised Algorithms via Machine Learning

(Slide 49/43)
CAD requires a variable ordering: there can be multiple valid

orderings which lead to an acceptable decomposition, but some
lead to smaller decompositions via less computation.

M. England
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CAD Variable Ordering Choice (Slide 50/43)

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

Depending on our application we may have a free or constrained
choice in variable ordering. When using CAD for QE we must
project variables in the order of quantification, but we are free to
change order within quantifier blocks (and with the free variables).

The variable ordering has been long known to effect the number of
cells produced in a CAD. There are various human-designed
heuristics to make the choice:
@ Some, e.g. Brown's heuristic, use only simple measures of the
polynomials (degrees, sparsity etc.)
@ Others, have uses more involved algebraic computations:
significantly more expensive but not showing results that
much better.

We prefer to focus on the former.
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ML for CAD variable ordering literature (Slide 51/43)

Actually the first application of ML for CAS optimisation:

@ Z. Huang, M. England, D. Wilson, J. Davenport, L. Paulson and J.
Bridge.
Applying machine learning to the problem of choosing a heuristic to select
the variable ordering for cylindrical algebraic decomposition.

Intelligent Computer Mathematics (LNCS 8543), pp. 92-107. Springer
Berlin Heidelberg, 2014.
http://dx.doi.org/10.1007/978-3-319-08434-3_8

EPSRC ML4QE project led to new techniques in feature
representation and hyperparameter selection:
@ D. Florescu and M. England.

A Machine Learning Based Software Pipeline to Pick the Variable
Ordering for Algorithms with Polynomial Inputs.

Mathematical Software (LNCS 12097), pp. 302-311. Springer International
Publishing, 2020. https://doi.org/10.1007/978-3-030-52200-1_30
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From Classification to Regression (Slide 52/43)

The previous work framed this naturally as a Machine Learning
classification problem (to choose from the discrete set of variable
orderings). Recent work reframed this as a regression problem to
predict the time taken with a particular ordering (with multiple
predictions then compared to choose the final ordering).

@ A model trained with regression has access to more
information: not just which ordering did best but also which
came second, which third etc.

@ Regression is a more difficult task, but we only need to be
good enough at it to make a ranking.

So we hypothesised that regression would outperform classification.

M. England Recent Developments in Real QE



The Real QE Problem
New Algorithms via Computational Logic
Final Thoughts

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

Classification vs. Regression Flowcharts (Slide 53/43)

Set of polynomials features J\

Sinxi, T, T3

by ryas (§) = 2648 Train

classification
berresr2a(S) = 15.28 model
toy-ryrs(S) = 18.28 label
togmzgez, (S) = 605
\_/_\
tagray-zy(5) = 17.5s

Classification

M. England Recent Developments in Real QE



The Real QE Problem
New Algorithms via Computational Logic
Final Thoughts

Open questions in CAD / QE
Optimised Algorithms via Machine Learning

Classification vs. Regression Flowcharts (Slide 53/43)
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Classification vs. Regression Results (Slide 54/43)

Not universally beneficial, but new state-of-the-art results.
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Recent work on XAl for QE variable ordering (Slide 55/43)

[@ L. Pickering, T. Del Rio Almajano, M. England and K. Cohen.
Explainable Al Insights for Symbolic Computation: A case
study on selecting the variable ordering for cylindrical algebraic
decomposition.

Journal of Symbolic Computation, 123, Article Number
102276, 2024.

We applied the SHAP XAl tool to analyse the features used in a
CAD ML-based variable ordering classifier. Some identified as
impactful had been known before but others were new.

Next constructed non-ML heuristics from trio's of these features,
in a similar design to prior human-designed heuristics. The best of
these outperform’s the state-of-the-art on standard benchmarks.

Demonstrates the potential for XAl as an exploratory tool.
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Thanks for Listening
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