Heuristics in SMT Solving: To Learn or not to Learn?

> Erika Ábrahám with Gereon Kremer

RWTH Aachen University, Germany

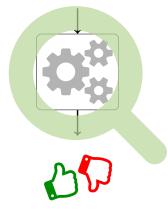
ICMS'18, 26 July 2018

What is this talk about?

 $\neg a \land b \lor c$ $x^2 + x_2 \sqrt{\varphi}$

What is this talk about?

 $\neg a \land b \lor c$ $x^2 + x_2 \sqrt{\varphi}$



What is the role of heuristics in SMT solving? Are there potentials for learning?

Propositional logic

Formula:	$(a \lor \neg b) \land (\neg a \lor b \lor c)$		
Satisfying assignment:	a = true,	b = false,	c = true

It is perhaps the most well-known NP-complete problem [Cook'71].

Propositional logic

Formula:	$(a \lor \neg b) \land (\neg a \lor b \lor c)$		
Satisfying assignment:	a = true,	b = false,	c = true

It is perhaps the most well-known NP-complete problem [Cook'71].

Non-linear real algebra (NRA)		
Formula:	$(x - 2y > 0 \lor x^2 - 2 = 0) \land x^4y + 2x^2 - 4 > 0$	
Satisfying assignment:	$x = \sqrt{2}, y = 2$	

There are some hard problem classes... non-linear integer arithmetic is even undecidable.

SAT solvers are full of heuristics, perhaps the two most successful ones being:

- dynamic variable ordering (VSIDS)
- resolution driven by enumeration/propagation search, learning resolvents (CDCL), forgetting learnt clauses

SAT solvers are full of heuristics, perhaps the two most successful ones being:

- dynamic variable ordering (VSIDS)
- resolution driven by enumeration/propagation search, learning resolvents (CDCL), forgetting learnt clauses

Research threads on machine learning in SAT solving: predict satisfiability, variable ordering, determine values for decision variables, clause forgetting,...

SAT solvers are full of heuristics, perhaps the two most successful ones being:

- dynamic variable ordering (VSIDS)
- resolution driven by enumeration/propagation search, learning resolvents (CDCL), forgetting learnt clauses

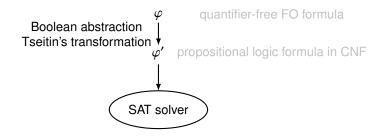
Research threads on machine learning in SAT solving: predict satisfiability, variable ordering, determine values for decision variables, clause forgetting,...

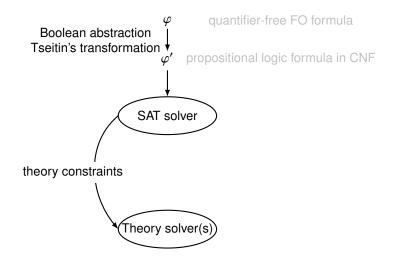
Problem: how to extract characteristic information for training sets?

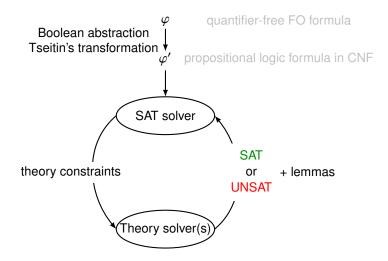
 φ quantifier-free FO formula

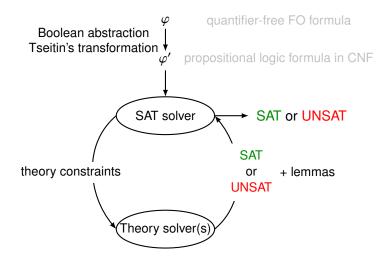
Boolean abstraction $\forall \varphi$ Tseitin's transformation $\forall \varphi'$ quantifier-free FO formula

propositional logic formula in CNF









General SMT solving heuristics

A particularly interesting case: variable ordering.

In SAT solving, VSIDS is very successful, but the variable odering at the Boolean level is not connected to the theory solver.

Also the variable ordering in arithmetic theory solvers is usually statically determined, independently of the problem at hand.

A particularly interesting case: variable ordering.

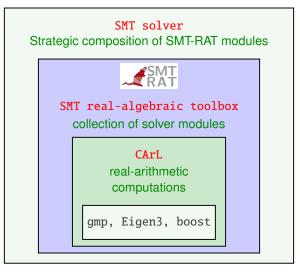
In SAT solving, VSIDS is very successful, but the variable odering at the Boolean level is not connected to the theory solver.

Also the variable ordering in arithmetic theory solvers is usually statically determined, independently of the problem at hand.

Other cases: preprocessing, restarts, constraint ordering, value ordering, ...

- AProVE (RWTH Aachen University, Germany)
- CVC4 (New York and Iowa, USA)
- MathSAT 5 (FBK, Italy)
- MiniSmt (University of Innsbruck, Austria)
- Boolector (JKU, Austria)
- SMT-RAT (RWTH Aachen University, Germany)
- veriT+Redlog (CNRS Inria, France and MPI Informatics, Germany)
- Z3 (NYU, Microsoft Research, USA)
- Yices 2 (SRI International, USA)

. . . .

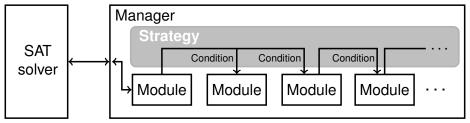


- MIT licensed source code: github.com/smtrat/smtrat
- Documentation: smtrat.github.io

Strategic composition of solver modules in SMT-RAT

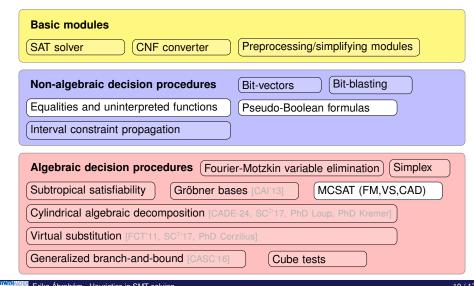
- Strategy: directed graph over modules with guarded edges
- Guard: may talk about the formula forwarded to backends
- Backend-calls: passed to all enabled successors → parallelism

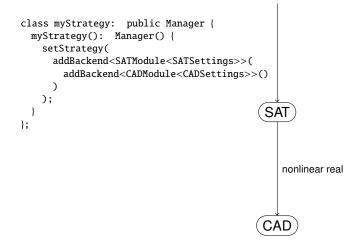
SMT solver

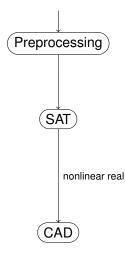


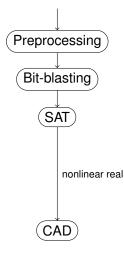
Solver modules in SMT-RAT

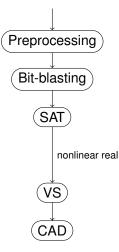
CArL library for basic arithmetic datatypes and computations [NEM'11, CAI'11, Sapientia'18]

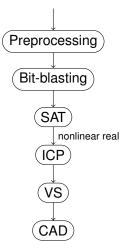


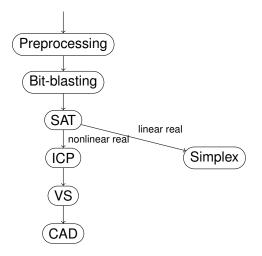


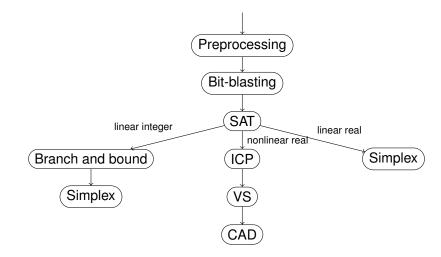


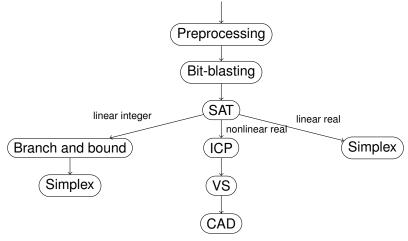






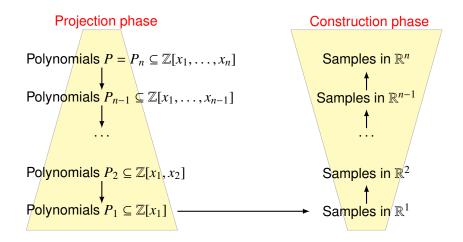


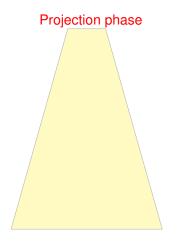


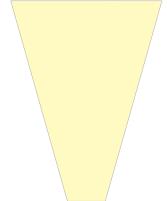


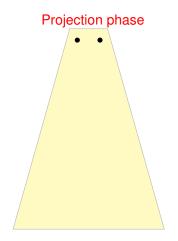
Which strategy to use for which problem?

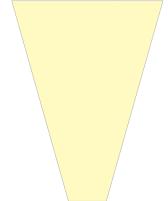
The cylindrical algebraic decomposition (CAD) method

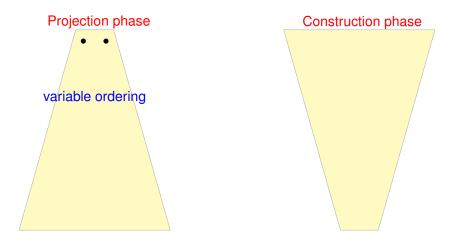


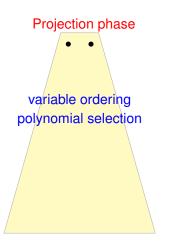


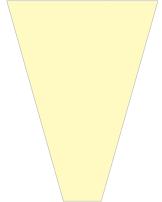


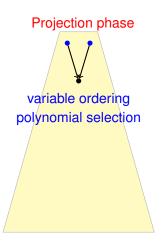


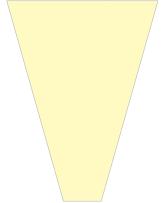


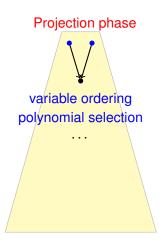




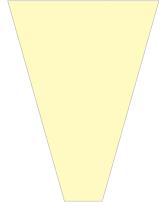


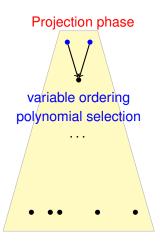




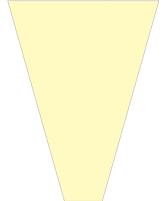


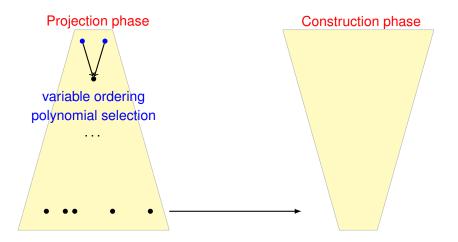
Construction phase

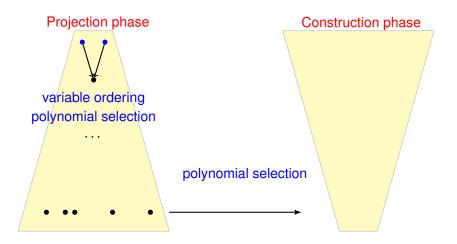


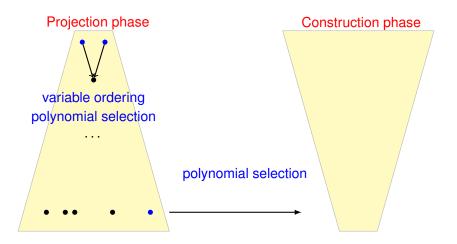


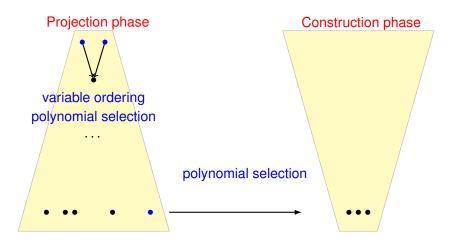
Construction phase

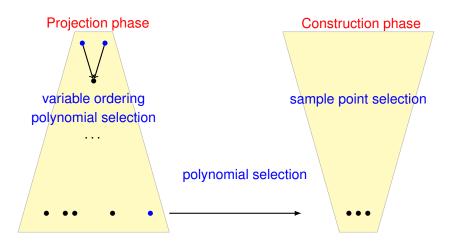


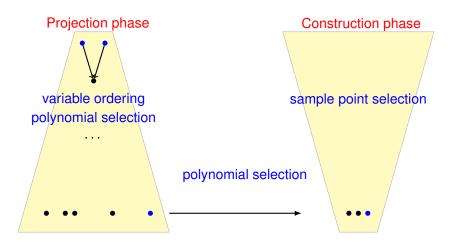


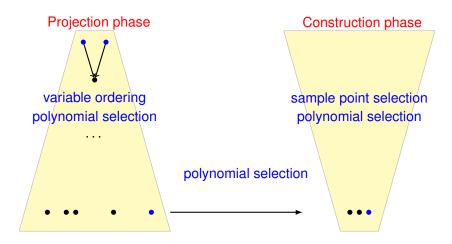


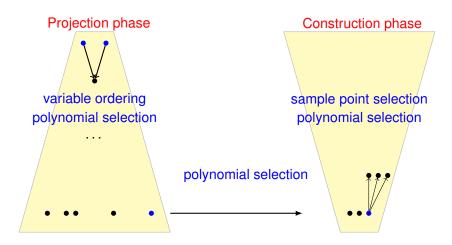


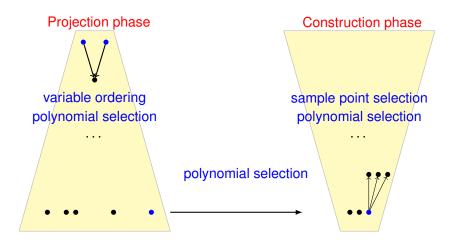


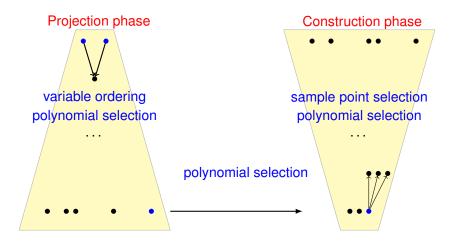












Experimental results: Projection order

11354 QF_NRA benchmarks, TO: 60 secs

- C: complexity
- S: single projection
- P: paired projection
- L_i: level in increasing order
- L_d: level in decreasing order

Solver	SO	runtime	
CAD C	8075	71.1 %	1.13
CAD SC	8074	71.1 %	1.13
CAD PC	8076	71.1 %	1.12
CAD L _i C	8135	71.6 %	1.28
$CAD L_d C$	8135	71.6 %	1.18

11354 QF_NRA benchmarks, TO: 60 secs

Solver	solved		average runtime
CAD midpoint	8147	71.8 %	1.21
CAD int closest to midpoint	8155	71.8 %	1.19
CAD smallest int	8158	71.9 %	1.22
CAD largest int	8144	71.7 %	1.20
CAD int close to 0	8154	71.8 %	1.20
CAD int far from 0	8146	71.7 %	1.21

Experimental results: Lifting

11354 QF_NRA benchmarks, TO: 60 secs

- T: type (integer, rational, algebraic)
- S: size
- A: absolute value
- L: level

Solver	solved		average runtime
CAD TSA	8118	71.5 %	1.21
CAD S	8121	71.5 %	1.22
CAD T	8138	71.7 %	1.20
CAD LTS	8143	71.7 %	1.22
CAD LT	8144	71.7 %	1.20

Can we draw the conclusion that these heuristics perform equally?

Can we draw the conclusion that these heuristics perform equally? Perhaps... but perhaps they perform differently on different problem types.

In the latter case learning could strengthen these methods.

Can we draw the conclusion that these heuristics perform equally? Perhaps... but perhaps they perform differently on different problem types.

In the latter case learning could strengthen these methods.

There are probably great potentials in learning heuristics, but a number of problems need to be solved before we can explore these possibilities.