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°

How Machine Learning Can Help

@ Solving Decision Problems
@ Exploring Algebraic (Sub)structure

© Choosing the Best Algorithm for a Particular Class of
Structure

© Heuristics/Metrics for Search Problems
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Methods of Studying Groups

A number of methods have been developed:
@ Linear Representations
e Computational
@ Combinatorial
o Geometric
@ Machine Learning [5]

We wish to apply machine learning techniques to solving
algorithmic problems in non-free infinite groups.
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Related Work

@ In [5], Haralick, et al. suggested a machine learning approach
to solving algorithmic problems in free groups.

@ Used supervised learning and clustering to investigate the
Whitehead minimization problem

@ Provided a general framework for the application of machine
learning techniques to group-theoretic problems.
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Tasks Required for Supervised Machine Learning

Data Generation

Feature Extraction

@ Model Selection

Evaluation and Analysis
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Data Sets

In supervised learning, the goal is to train a model that can predict
classes or values on new, unseen members of the data domain.
Therefore, we need at least two distinct sets - training and
verification. We suggest three:
@ Training Set - The set S; is used to train the initial classifier
or regression function.
e Optimization Set - The set S, can used to optimize the
parameters of a decision rule, or be used for feature selection.
o Verification Set - The set S, is used to evaluate the
performance of the (optimized) decision rule.
If generating data is expensive or data is sparse, cross-validation
strategies such as k-fold cross validation can be employed.
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Feature Extraction via Counting Subgraphs and Normal

Forms

@ Given a free group F(X) and a finite set of words
U={u,...,ux| up € F(X)}, for any word w € F(X) we can
form a counting subgraph T'(w) = (V, E), with V = X U X~1

@ Forany x,y € V and u; € U, we form a directed edge
(x,y) € E, labeled by xu;jy and assigned the weight
C(w, xujy), which is equal to the number of times the
reduced subword xu;y occurs in w

@ These are directed generalization of Whitehead graphs

@ Features can be extracted by combining different counting
functions C(w, t) into feature vectors

o If a finitely presented group possesses an efficiently
computable normal form, we can readily convert these forms
to feature vectors
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Feature Vectors

Let G be a finitely generated group with generating set X and
possessing a normal form, and let Y = X ux-1
e ng (Normal Form) - If w is a word in normal form, then w is
of the form
}/]-e1 N yﬁl’v

with y; € Y and e; € Z. The feature vector ng is then
ng = <e1,...,eN>.

e ny (Weighted Normal Form) - The feature vector n is the
same as ng above, except it is weighted by the word length
|wl:

Cfen, . en)
n = —(€1,...,€N).
wl
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Feature Vectors (cont.)

The features below were introduced in [5]. They apply to finitely
presented groups in general and do not require a normal form:
e fo (Generator Count) - Given a fixed order on X, let x; € X be
the ith generator. We can then define the counting function
C(w,x;) = [{w; | wj = x; V x; 1 }|. The feature vector f, is then

fo=(C(w,x1),...,C(w,xn)).

o fi (Weighted Generator Count) - The feature vector fi is the
same as fy above, except it is weighted by the word length |w/:

1

[w]

f (C(w, x1), ..., C(w,xn)).
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Feature Vectors (cont.)

e f, through 7 (Counting Subgraphs) - Let
Uy = {uj € F(X) | |uj| = I}, and consider the counting
functions C(w, xuj;y), with uj; € Uy and x,y € X such that
xujjy is a geodesic word. For each subword length / there is a
weighted and non-weighted variant:

fh= (C(w,xuijy) | x,y € Yiuj € Up)
fi= u(Clw,xuyy) | x,y € Yiu € Uh)
fr = (C(w, xuzjy) | x,y € Yiuj € Up)
fo = %MC(W,XUZJ')/) | x,y € Yiuj € U)
fo = (C(w,xusjy) | x,y € Y;u; € Us)
fr= T {Clw,xuzjy) | x,y € Yiuj € Us)
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Model Selection

@ Many models to choose from (e.g., SVM, Naive Bayes, CNN)

@ Explore models that are discrete and whose results are
interpretable:

o Decision Tree - Uses a tree structure to partition the feature
space

o Random Forest - Uses an ensemble of trees with subsampling
of the feature vector

o N-Tuple Neural Network (NTNN) - Aggregate observed
subsamples of the feature vector
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N-Tuple Neural Networks (NTNN)

NTNNs can be interpreted through the framework of relational
algebra:

@ Transform each sample s into a feature vector x of length N

o Let J1,...,Jy be index sets or patterns of uniform length P,
that is, subsets of the set {0,...,N — 1}

@ Maintain tables T, - one for each pattern J,, and class c € C

e Given a feature vector x, the projection k = mmc(x) is stored
in Tme

@ For each observed value k, a count ¢, of the number of times
k was observed is stored in T

@ During classification, assign s to class ¢’ if

Y omem Tmer(8) > > mem Tme(s) for all classes ¢ # ¢’

@ Choice of patterns can be optimized through a greedy
algorithm
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NTTN - Example

Consider an NTNN with the parameters N =5, M =2, and
P = 3. The table below represents the NTNN table entries for
class O after training on the first 3 samples:

s Jo 700 Too
(—4,-1,5,2,3) (—4,5,3) | (—4,5,3) —~
(—4,-7,5,2,3) | (0,2,4) | (=4,5.3) | (-2,6,1)— 1
(~2,-1,6,3,1) (—2,6,1)

s S 710 T1o
(—4,-1,5,2,3) (-1,5,2) | (-1,5,2) — 1
(—4,-7,5,2,3) | (1,2,3) | (=7,5,2) | (~7,5,2) > 1
(-2,-1,6,3,1) (-1,6,3) | (-1,6,3)—~ 1
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Evaluation and Analysis

If the classes are balanced, then accuracy is the preferred measure
of classification performance. The accuracy A of the model M(f),
trained with respect to the feature vector f, over the test set S,, is

calculated as:

True Positives(S, )| + |True Negatives(S,
A5~ (51 (5.)
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Solving the CDP via Machine Learning

Solving the Conjugacy Decision Problem via Machine
Learning|3]

Jonathan Gryak, Robert M. Haralick, and Delaram Kahrobaei.
Solving the Conjugacy Decision Problem via Machine Learning.
Experimental Mathematics, 1-13, 2018.
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Conjugacy Decision Problem

Conjugacy Decision Problem

Given a group G and elements u, v € G, the conjugacy decision
problem asks if 3z € G such that u = zvz~!
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Data Generation

Each dataset consists of 20,000 pairs of words in normal form, with
two 10,000 pair halves that are generated via the following
procedures:

© Random Non-Conjugate Word Pairs in Normal Form - For
each n € [5,1004] we generate two words u, v representing
elements in G, with |u| = |v| = n. To verify that u is not
conjugate to v, the method of Kapovich et al. [6] is used.

@ Random Conjugate Word Pairs in Normal Form - For
n € [5,1004] we generate a pair of words v, z representing
element in G with |v| = |z| = n. Each word v, z is generated
uniformly and randomly as above. After v and z are
generated, the word u = vZ is formed, and the tuple (u, v) is
added to the dataset.

This process is repeated 10 times for each n.
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Additional Datasets

To better evaluate the performance of our classifiers, we generated
additional data sets with varying ranges of lengths:

Collection Conjugate Pair (u,v = ut) Non-Conjugate Pair (u, v)
Dy lul = t| =1 I € [5,1004] lul = |v|=m; m € [5,1004]
Dy lu| =1t =1, 1 €[5,1004] | |u|=m,|v|=n; m,ne[51004]
D, lul=1|t|=p; [I,p€[5,1004] | |u| =m,|v|=n; m,ne ][5 1004]
_ o lu| = m,|v]=n; m € [5,1004]
Ds lul=1|t|=p; I, pe[5,1004] n € [ming,, maxp,]

where minp, (maxp,) correspond to the minimum (maximum)
word length in a conjugate pair for the data set D>
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Feature Vectors

Given a group G and words u, v € G, we concatenate the unit
feature vectors ng and n; to create two derived feature vectors for
the conjugacy decision problem:

co = (no(u) || no(v))

1 = (m(v) || m(v))
The default feature vector for tree-based classifiers is ¢; (weighted
normal forms), while for NTNNs it is ¢y (unweighted normal
forms).
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Model Selection

We tested all three classification models with the following
parameters:

@ Decision Tree and Random Forests:

e Both Gini impurity and information gain were evaluated.
e Having no depth limit or pre-pruning to a depth of log,5; — 1
were both tested.

@ NTNN:

o The number of patterns M was tested over the range
{10, 20, 30, 50, 100}.

e The initial size P of the patterns was set to 3, with sizes in the
range [3,5] tested where applicable.



ML CDP
000000@0000

BS(1,2)

The Baumslag-Solitar group BS(1,2) is given by the presentation
below:
BS(1,2) = (a,b | bab*a2).

The group has the normal form
ng = b™1a® b,

with e1,e3 > 0 and if e, e3 > 0 then e is not divisible by 2.
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Non-Virtually Nilpotent Polycyclic Groups

These non-virtually nilpotent polycyclic groups can be constructed
by using the MaximalOrderByUnitsPcpGroup function of the
GAP Polycyclic package [2]:

@ O x Ui4 - Given the polynomial f = x? —7x3 — 1,
MaximalOrderByUnitsPcpGroup returns a group with a
Hirsch length of 14.

@ O x Usg - Given the polynomial f = x1 —x3 —1,
MaximalOrderByUnitsPcpGroup returns a group with a
Hirsch length of 16.

@ O x Usy - Given the polynomial f = x23 — x3 — 1,
MaximalOrderByUnitsPcpGroup returns a group with a
Hirsch length of 34.
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GMBS(2,3)

The generalized metabelian Baumslag-Solitar[4] group GMBS(2,3)
given by the following presentation:

GMBS(2,3) = (q1, go, b | b% = b?, b% = b3 [q1, go] = 1).

Elements in GMBS(2,3) can be uniquely written in the following

normal form:

_ —€1 ,—€2 € €4 €5
no=qy G, °b=q1'q;’,

with e1, e, es4,65 >0, 21 e3 if e1,e4 >0, and 31 e3 if 2,65 > 0.
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SL(2,7)

The set of 2 x 2 integral matrices with determinant 1 forms the
group SL(2,Z) under matrix multiplication.

SL(2,7Z) was implemented in GAP with a dual representation: For
each element x € SL(2,Z) we have the following pair x = (m, w)
of the form

b
"= |:i d:|’W:W1"'anwie{5i17Ri1}v

with a, b, c,d € Z such that ad — bc =1, and S and R
corresponding to the matrices below that generate SL(2,7Z):

o[22 ]ae]0 )
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Performance on Different Datasets

Despite the changes in word lengths within each data collection,
classification accuracy was maintained:

Data Collection
Group Dy D, D, D3

BS(1,2) 93.64% (Fe) | 93.20% (Fg) | 95.30% (F.) | 98.86% (Fe)
O« Uys 98.77% (N;) | 98.67% (Feg) | 98.38% (Feq) | 99.75% (N;)
O x Use 98.46% (Ns) | 97.24% (Feq) | 96.65% (Feq) | 99.11% (Fg)
O x Uz 99.50% (N;) | 98.72% (Feq) | 98.28% (Feq) | 99.29% (N;)
GMBS(2,3) | 96.49% (Fe) | 95.22% (F.) | 96.45% (Ns) | 99.13% (ng)
SL(2,7Z) 99.81% (N;) | 99.91% (Fg) | 93.89% (F.) | 97.38% (F;)
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Further Applications

Thus we have shown the following:

@ A general method for applying machine learning to problems
in non-free groups

@ The conjugacy decision problem can be solved using machine
learning with high accuracy

Further applications:
@ Exploring Algebraic (Sub)structure
© Choosing the Best Algorithm
@ Heuristics/Metrics for Search Problems
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Exploring Algebraic Structure

o Use discrete, interpretable supervised learning models (e.g.,
NTNN, Decision Trees) for classification

@ Use unsupervised learning models for clustering (e.g.,
K-means clustering)

@ Use higher order features to explore superstructure
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Choosing the Best Algorithm

@ Use classifiers to determine whether an object is a member of
a particular class with better algorithms (e.g., hyperbolic
group, automatic group)
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Heuristics/Metrics for Search Problems

@ Use metric learning (e.g., ITML [1]) to determine lengths in
an appropriate space

@ For search problems, use regression models (e.g., NTRN) to
produce estimate that can act as an initial seed for
heuristic-based search (e.g., local conjugacy search over the
Cayley graph)
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Questions?

Your questions and comments, please.
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