ntroduction	ML Approach	ML CDP	Further Applications	References

Solving Algorithmic Problems in Algebraic Structures via Machine Learning

Jonathan Gryak University of Michigan, Ann Arbor

ICMS 2018 University of Notre Dame July 26, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	ML Approach	ML CDP	Further Applications	References

- 1 How Machine Learning Can Help
- 2 A Machine Learning Approach to Group-Theoretic Problems
- 3 Solving the Conjugacy Decision Problem via Machine Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4 Further Applications

ML Approach

Introduction

ML CDP 00000000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

How Machine Learning Can Help

- Solving Decision Problems
- Exploring Algebraic (Sub)structure
- Schoosing the Best Algorithm for a Particular Class of Structure
- Heuristics/Metrics for Search Problems

Introduction	ML Approach	ML CDP	Further Applications	References
O	●00000000000	00000000000		00
Methods o	f Studying G	roups		

A number of methods have been developed:

- Linear Representations
- Computational
- Combinatorial
- Geometric
- Machine Learning [5]

We wish to apply machine learning techniques to solving algorithmic problems in non-free infinite groups.

Introduction	ML Approach	ML CDP	Further Applications	References
O	00000000000	00000000000		00
Related V	Mark			

- In [5], Haralick, et al. suggested a machine learning approach to solving algorithmic problems in free groups.
- Used supervised learning and clustering to investigate the Whitehead minimization problem
- Provided a general framework for the application of machine learning techniques to group-theoretic problems.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Tasks Required for Supervised Machine Learning

- Data Generation
- Feature Extraction
- Model Selection
- Evaluation and Analysis

Introduction	ML Approach	ML CDP	Further Applications	References
O	0000000000	0000000000		00
Data Sets				

In supervised learning, the goal is to train a model that can predict classes or values on new, unseen members of the data domain. Therefore, we need at least two distinct sets - training and verification. We suggest three:

- *Training Set* The set *S_i* is used to train the initial classifier or regression function.
- Optimization Set The set S_o can used to optimize the parameters of a decision rule, or be used for feature selection.
- Verification Set The set S_v is used to evaluate the performance of the (optimized) decision rule.

If generating data is expensive or data is sparse, cross-validation strategies such as k-fold cross validation can be employed.

- Given a free group F(X) and a finite set of words $U = \{u_1, \ldots, u_k \mid u_j \in F(X)\}$, for any word $w \in F(X)$ we can form a *counting subgraph* $\Gamma(w) = (V, E)$, with $V = X \cup X^{-1}$
- For any x, y ∈ V and u_j ∈ U, we form a directed edge (x, y) ∈ E, labeled by xu_jy and assigned the weight C(w, xu_jy), which is equal to the number of times the reduced subword xu_jy occurs in w
- These are directed generalization of Whitehead graphs
- Features can be extracted by combining different *counting functions* C(w, t) into feature vectors
- If a finitely presented group possesses an efficiently computable *normal form*, we can readily convert these forms to feature vectors

Let G be a finitely generated group with generating set X and possessing a normal form, and let $Y = X \cup X^{-1}$.

 n₀ (Normal Form) - If w is a word in normal form, then w is of the form

 $y_1^{e_1}\cdots y_N^{e_N}$

with $y_i \in Y$ and $e_i \in \mathbb{Z}$. The feature vector n_0 is then

$$n_0 = \langle e_1, \ldots, e_N \rangle.$$

n1 (Weighted Normal Form) - The feature vector n1 is the same as n0 above, except it is weighted by the word length |w|:

$$n_1=\frac{1}{|w|}\langle e_1,\ldots,e_N\rangle.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The features below were introduced in [5]. They apply to finitely presented groups in general and do not require a normal form:

• f_0 (*Generator Count*) - Given a fixed order on X, let $x_i \in X$ be the *i*th generator. We can then define the counting function $C(w, x_i) = |\{w_j \mid w_j = x_i \lor x_i^{-1}\}|$. The feature vector f_0 is then

$$f_0 = \langle C(w, x_1), \ldots, C(w, x_N) \rangle.$$

 f₁ (Weighted Generator Count) - The feature vector f₁ is the same as f₀ above, except it is weighted by the word length |w|:

$$f_1 = \frac{1}{|w|} \langle C(w, x_1), \ldots, C(w, x_N) \rangle.$$

 f₂ through f₇ (Counting Subgraphs) - Let U_I = {u_j ∈ F(X) | |u_j| = I}, and consider the counting functions C(w, xu_{lj}y), with u_{lj} ∈ U_I and x, y ∈ X such that xu_{lj}y is a geodesic word. For each subword length I there is a weighted and non-weighted variant:

$$\begin{array}{ll} f_{2} = & \langle C(w, xu_{1j}y) \mid x, y \in Y; u_{j} \in U_{1} \rangle \\ f_{3} = & \frac{1}{|w|} \langle C(w, xu_{1j}y) \mid x, y \in Y; u_{j} \in U_{1} \rangle \\ f_{4} = & \langle C(w, xu_{2j}y) \mid x, y \in Y; u_{j} \in U_{2} \rangle \\ f_{5} = & \frac{1}{|w|} \langle C(w, xu_{2j}y) \mid x, y \in Y; u_{j} \in U_{2} \rangle \\ f_{6} = & \langle C(w, xu_{3j}y) \mid x, y \in Y; u_{j} \in U_{3} \rangle \\ f_{7} = & \frac{1}{|w|} \langle C(w, xu_{3j}y) \mid x, y \in Y; u_{j} \in U_{3} \rangle \end{array}$$

Introduction	ML Approach	ML CDP	Further Applications	References
O	0000000000000	00000000000		00
Model Se	alection			

- Many models to choose from (e.g., SVM, Naïve Bayes, CNN)
- Explore models that are discrete and whose results are interpretable:
 - Decision Tree Uses a tree structure to partition the feature space
 - Random Forest Uses an ensemble of trees with subsampling of the feature vector

• N-Tuple Neural Network (NTNN) - Aggregate observed subsamples of the feature vector

Introduction ML Approach ML CDP Further Applications References

N-Tuple Neural Networks (NTNN)

NTNNs can be interpreted through the framework of relational algebra:

- Transform each sample s into a feature vector x of length N
- Let J_1, \ldots, J_M be index sets or *patterns* of uniform length P, that is, subsets of the set $\{0, \ldots, N-1\}$
- Maintain tables ${\mathcal T}_{mc}$ one for each pattern J_m and class $c \in {\mathcal C}$
- Given a feature vector x, the projection k = π_{mc}(x) is stored in T_{mc}
- For each observed value k, a count c_k of the number of times k was observed is stored in T_{mc}
- During classification, assign s to class c' if $\sum_{m \in M} T_{mc'}(s) > \sum_{m \in M} T_{mc}(s) \text{ for all classes } c \neq c'.$
- Choice of patterns can be optimized through a greedy algorithm

Introduction	ML Approach	ML CDP	Further Applications	References
O	ooooooooooooo	0000000000		00
NTTN - E>	ample			

Consider an NTNN with the parameters N = 5, M = 2, and P = 3. The table below represents the NTNN table entries for class 0 after training on the first 3 samples:

5	J ₀	π_{00}	T_{00}	
$\langle -4, -1, 5, 2, 3 \rangle$		(-4, 5, 3)	$(-4,5,3)\mapsto$	2
$\langle -4, -7, 5, 2, 3 \rangle$	(0, 2, 4)	(-4, 5, 3)	$(-2,6,1)\mapsto$	1
$\langle -2, -1, 6, 3, 1 angle$		(-2, 6, 1)		
S	J_1	π_{10}	T ₁₀	
$rac{s}{\langle -4, -1, 5, 2, 3 angle}$	<i>J</i> ₁	$\frac{\pi_{10}}{(-1,5,2)}$	$\begin{array}{c} T_{10} \\ (-1,5,2) \mapsto \end{array}$	1
$egin{array}{c} s \ \langle -4, -1, 5, 2, 3 angle \ \langle -4, -7, 5, 2, 3 angle \end{array}$	J_1 (1, 2, 3)	$\begin{array}{c} \pi_{10} \\ (-1,5,2) \\ (-7,5,2) \end{array}$	$\begin{array}{c} T_{10} \\ (-1,5,2) \mapsto \\ (-7,5,2) \mapsto \end{array}$	1 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	ML Approach	ML CDP	Further Applications	References
0	00000000000	0000000000		00
Evaluation	and Analysis			

If the classes are balanced, then accuracy is the preferred measure of classification performance. The accuracy \mathcal{A} of the model $\mathcal{M}(f)$, trained with respect to the feature vector f, over the test set S_v , is calculated as:

$$\mathcal{A}(\mathcal{M}(f), S_{\nu}) = rac{|\mathrm{True \ Positives}(S_{\nu})| + |\mathrm{True \ Negatives}(S_{\nu})|}{|S_{\nu}|}$$

Introduction ML Approach OCODO ML CDP Further Applications OCODO O

Solving the Conjugacy Decision Problem via Machine Learning[3]

Paper

Jonathan Gryak, Robert M. Haralick, and Delaram Kahrobaei. Solving the Conjugacy Decision Problem via Machine Learning. *Experimental Mathematics*, 1–13, 2018.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conjugacy Decision Problem

Given a group G and elements $u, v \in G$, the conjugacy decision problem asks if $\exists z \in G$ such that $u = zvz^{-1}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction	ML Approach	ML CDP	Further Applications	References
0	00000000000	000000000		00
Data Gener	ration			

Each dataset consists of 20,000 pairs of words in normal form, with two 10,000 pair halves that are generated via the following procedures:

- Random Non-Conjugate Word Pairs in Normal Form For each n ∈ [5, 1004] we generate two words u, v representing elements in G, with |u| = |v| = n. To verify that u is not conjugate to v, the method of Kapovich et al. [6] is used.
- ② Random Conjugate Word Pairs in Normal Form For n ∈ [5, 1004] we generate a pair of words v, z representing element in G with |v| = |z| = n. Each word v, z is generated uniformly and randomly as above. After v and z are generated, the word u = v^z is formed, and the tuple (u, v) is added to the dataset.

This process is repeated 10 times for each n.

Introduction	ML Approach	ML CDP	Further Applications	References
0	00000000000	0000000000		00
Additiona	al Datasets			

To better evaluate the performance of our classifiers, we generated additional data sets with varying ranges of lengths:

Collection	Conjugate Pair $(u, v = u^t)$		Non-Conjuga	te Pair (u, v)
<i>D</i> ₀	u = t = I;	$l \in [5, 1004]$	u = v =m;	$m \in [5, 1004]$
<i>D</i> ₁	u = t = I;	<i>l</i> ∈ [5, 1004]	u =m, v =n;	$m, n \in [5, 1004]$
D ₂	u =I, t =p;	$l, p \in [5, 1004]$	u =m, v =n;	$m, n \in [5, 1004]$
<i>D</i> ₃	u =I, t =p;	<i>I</i> , <i>p</i> ∈ [5, 1004]	u = m, v = n; $n \in [\min_D n]$	$m \in [5, 1004]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\min_{D_2} (\max_{D_2})$ correspond to the minimum (maximum) word length in a conjugate pair for the data set D_2

Introduction	ML Approach	ML CDP	Further Applications	References
O	000000000000	0000000000		00
Feature V	ectors			

Given a group G and words $u, v \in G$, we concatenate the unit feature vectors n_0 and n_1 to create two derived feature vectors for the conjugacy decision problem:

$$c_0 = \langle n_0(u) \parallel n_0(v) \rangle$$

$$c_1 = \langle n_1(u) \parallel n_1(v) \rangle$$

The default feature vector for tree-based classifiers is c_1 (weighted normal forms), while for NTNNs it is c_0 (unweighted normal forms).

Introduction	ML Approach	ML CDP	Further Applications	References
O	00000000000	0000000000		00
Model Sele	ction			

We tested all three classification models with the following parameters:

- Decision Tree and Random Forests:
 - Both Gini impurity and information gain were evaluated.
 - Having no depth limit or pre-pruning to a depth of $log_2S_i 1$ were both tested.
- NTNN:
 - The number of patterns M was tested over the range $\{10, 20, 30, 50, 100\}$.
 - The initial size *P* of the patterns was set to 3, with sizes in the range [3, 5] tested where applicable.

Introduction	ML Approach	ML CDP	Further Applications	References
O	00000000000	00000000000		00
BS(1,2)				

The Baumslag-Solitar group BS(1,2) is given by the presentation below:

$$BS(1,2) = \langle a, b \mid bab^{-1}a^{-2} \rangle.$$

The group has the normal form

$$n_0 = b^{-e_1} a^{e_2} b^{e_3},$$

(日) (日) (日) (日) (日) (日) (日) (日)

with $e_1, e_3 \ge 0$ and if $e_1, e_3 > 0$ then e_2 is not divisible by 2.

These non-virtually nilpotent polycyclic groups can be constructed by using the MaximalOrderByUnitsPcpGroup function of the GAP Polycyclic package [2]:

- $\mathcal{O} \rtimes U_{14}$ Given the polynomial $f = x^9 7x^3 1$, MaximalOrderByUnitsPcpGroup returns a group with a Hirsch length of 14.
- O ⋊ U₁₆ Given the polynomial f = x¹¹ x³ 1, MaximalOrderByUnitsPcpGroup returns a group with a Hirsch length of 16.
- O ⋊ U₃₄ Given the polynomial f = x²³ x³ 1, MaximalOrderByUnitsPcpGroup returns a group with a Hirsch length of 34.

The generalized metabelian Baumslag-Solitar[4] group GMBS(2,3) given by the following presentation:

$$\mathsf{GMBS}(2,3) = \langle q_1, q_2, b \mid b^{q_1} = b^2, b^{q_2} = b^3, [q_1, q_2] = 1 \rangle.$$

Elements in GMBS(2,3) can be uniquely written in the following normal form:

$$n_0 = q_1^{-e_1} q_2^{-e_2} b^{e_3} q_1^{e_4} q_2^{e_5},$$

(日) (日) (日) (日) (日) (日) (日) (日)

with $e_1, e_2, e_4, e_5 \ge 0$, $2 \nmid e_3$ if $e_1, e_4 > 0$, and $3 \nmid e_3$ if $e_2, e_5 > 0$.

The set of 2×2 integral matrices with determinant 1 forms the group SL(2, \mathbb{Z}) under matrix multiplication.

 $SL(2,\mathbb{Z})$ was implemented in GAP with a dual representation: For each element $x \in SL(2,\mathbb{Z})$ we have the following pair x = (m, w) of the form

$$m = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, w = w_1 \cdots w_n, w_i \in \{S^{\pm 1}, R^{\pm 1}\},$$

with $a, b, c, d \in \mathbb{Z}$ such that ad - bc = 1, and S and R corresponding to the matrices below that generate $SL(2,\mathbb{Z})$:

$$S = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right], R = \left[\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array} \right]$$

Despite the changes in word lengths within each data collection, classification accuracy was maintained:

	Data Collection			
Group	D ₀	D ₁	D ₂	D ₃
BS(1,2)	93.64% (F _e)	93.20% (F _g)	95.30% (F _e)	98.86% (F _e)
$\mathcal{O} \rtimes U_{14}$	98.77% (N ₁)	98.67% (F _{ed})	98.38% (F _{ed})	99.75% (N ₁)
$\mathcal{O} \rtimes U_{16}$	98.46% (N _s)	97.24% (F _{ed})	96.65% (F _{ed})	99.11% (F _g)
$\mathcal{O} \rtimes U_{34}$	99.50% (N ₁)	98.72% (F _{ed})	98.28% (F _{ed})	99.29% (N ₁)
GMBS(2,3)	96.49% (F _e)	95.22% (F _e)	96.45% (N _s)	99.13% (F _{gd})
$SL(2,\mathbb{Z})$	99.81% (N ₁)	99.91% (F _g)	93.89% (F _e)	97.38% (F _g)

Introduction	ML Approach	ML CDP	Further Applications	References
O	000000000000	00000000000		00
Further A	pplications			

Thus we have shown the following:

- A general method for applying machine learning to problems in non-free groups
- The conjugacy decision problem can be solved using machine learning with high accuracy

Further applications:

- Exploring Algebraic (Sub)structure
- Ochoosing the Best Algorithm
- Heuristics/Metrics for Search Problems

ntroduction	ML Approach	ML CDP	Further Applications	References
C	00000000000	0000000000	0●000	00

Exploring Algebraic Structure

• Use discrete, interpretable supervised learning models (e.g., NTNN, Decision Trees) for classification

- Use unsupervised learning models for clustering (e.g., K-means clustering)
- Use higher order features to explore superstructure

Choosing the Best Algorithm

• Use classifiers to determine whether an object is a member of a particular class with better algorithms (e.g., hyperbolic group, automatic group)

References

Heuristics/Metrics for Search Problems

- Use metric learning (e.g., ITML [1]) to determine lengths in an appropriate space
- For search problems, use regression models (e.g., NTRN) to produce estimate that can act as an initial seed for heuristic-based search (e.g., local conjugacy search over the Cayley graph)

Introduction	ML Approach	ML CDP	Further Applications	References
0	000000000000	00000000000	0000●	00
Questions?				

Your questions and comments, please.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	ML Approach	ML CDP	Further Applications	References
O	00000000000	0000000000		●●
References				

- Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic metric learning. In Proceedings of the 24th international conference on Machine learning, pages 209–216. ACM, 2007.
- [2] Bettina Eick, Werner Nickel, and Max Horn. Polycyclic, computation with polycyclic groups, Version 2.11. http:// www.icm.tu-bs.de/ag_algebra/software/polycyclic/, Mar 2013. Refereed GAP package.
- [3] Jonathan Gryak, Robert M. Haralick, and Delaram Kahrobaei. Solving the conjugacy decision problem via machine learning. *Experimental Mathematics*, pages 1–13, 2018.

- [4] Jonathan Gryak, Delaram Kahrobaei, and Conchita Martinez-Perez. On the conjugacy problem in certain metabelian groups. 2018. Glasgow Mathematical Journal, Cambridge University Press.
- [5] Robert Haralick, Alex D. Miasnikov, and Alexei G. Myasnikov. Pattern recognition approaches to solving combinatorial problems in free groups. Computational and Experimental Group Theory: AMS-ASL Joint Special Session, Interactions Between Logic, Group Theory, and Computer Science, January 15-16, 2003, Baltimore, Maryland, 349:197–213, 2004.
- [6] Ilya Kapovich, Alexei G. Myasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case complexity, decision problems in group theory, and random walks. *Journal of Algebra*, 264(2):665–694, 2003.