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How Machine Learning Can Help

1 Solving Decision Problems

2 Exploring Algebraic (Sub)structure

3 Choosing the Best Algorithm for a Particular Class of
Structure

4 Heuristics/Metrics for Search Problems
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Methods of Studying Groups

A number of methods have been developed:

Linear Representations

Computational

Combinatorial

Geometric

Machine Learning [5]

We wish to apply machine learning techniques to solving
algorithmic problems in non-free infinite groups.
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Related Work

In [5], Haralick, et al. suggested a machine learning approach
to solving algorithmic problems in free groups.

Used supervised learning and clustering to investigate the
Whitehead minimization problem

Provided a general framework for the application of machine
learning techniques to group-theoretic problems.
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Tasks Required for Supervised Machine Learning

Data Generation

Feature Extraction

Model Selection

Evaluation and Analysis
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Data Sets

In supervised learning, the goal is to train a model that can predict
classes or values on new, unseen members of the data domain.
Therefore, we need at least two distinct sets - training and
verification. We suggest three:

Training Set - The set Si is used to train the initial classifier
or regression function.

Optimization Set - The set So can used to optimize the
parameters of a decision rule, or be used for feature selection.

Verification Set - The set Sv is used to evaluate the
performance of the (optimized) decision rule.

If generating data is expensive or data is sparse, cross-validation
strategies such as k-fold cross validation can be employed.
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Feature Extraction via Counting Subgraphs and Normal
Forms

Given a free group F (X ) and a finite set of words
U = {u1, . . . , uk | uj ∈ F (X )}, for any word w ∈ F (X ) we can
form a counting subgraph Γ(w) = (V ,E ), with V = X ∪ X−1

For any x , y ∈ V and uj ∈ U, we form a directed edge
(x , y) ∈ E , labeled by xujy and assigned the weight
C (w , xujy), which is equal to the number of times the
reduced subword xujy occurs in w

These are directed generalization of Whitehead graphs

Features can be extracted by combining different counting
functions C (w , t) into feature vectors

If a finitely presented group possesses an efficiently
computable normal form, we can readily convert these forms
to feature vectors
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Feature Vectors

Let G be a finitely generated group with generating set X and
possessing a normal form, and let Y = X ∪ X−1.

n0 (Normal Form) - If w is a word in normal form, then w is
of the form

y e11 · · · y
eN
N

with yi ∈ Y and ei ∈ Z. The feature vector n0 is then

n0 = 〈e1, . . . , eN〉.

n1 (Weighted Normal Form) - The feature vector n1 is the
same as n0 above, except it is weighted by the word length
|w |:

n1 =
1

|w |
〈e1, . . . , eN〉.
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Feature Vectors (cont.)

The features below were introduced in [5]. They apply to finitely
presented groups in general and do not require a normal form:

f0 (Generator Count) - Given a fixed order on X , let xi ∈ X be
the ith generator. We can then define the counting function
C (w , xi ) = |{wj | wj = xi ∨ x−1i }|.The feature vector f0 is then

f0 = 〈C (w , x1), . . . ,C (w , xN)〉.

f1 (Weighted Generator Count) - The feature vector f1 is the
same as f0 above, except it is weighted by the word length |w |:

f1 =
1

|w |
〈C (w , x1), . . . ,C (w , xN)〉.
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Feature Vectors (cont.)

f2 through f7 (Counting Subgraphs) - Let
Ul = {uj ∈ F (X ) | |uj | = l}, and consider the counting
functions C (w , xuljy), with ulj ∈ Ul and x , y ∈ X such that
xuljy is a geodesic word. For each subword length l there is a
weighted and non-weighted variant:

f2 = 〈C (w , xu1jy) | x , y ∈ Y ; uj ∈ U1〉
f3 = 1

|w |〈C (w , xu1jy) | x , y ∈ Y ; uj ∈ U1〉
f4 = 〈C (w , xu2jy) | x , y ∈ Y ; uj ∈ U2〉
f5 = 1

|w |〈C (w , xu2jy) | x , y ∈ Y ; uj ∈ U2〉
f6 = 〈C (w , xu3jy) | x , y ∈ Y ; uj ∈ U3〉
f7 = 1

|w |〈C (w , xu3jy) | x , y ∈ Y ; uj ∈ U3〉
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Model Selection

Many models to choose from (e.g., SVM, Näıve Bayes, CNN)

Explore models that are discrete and whose results are
interpretable:

Decision Tree - Uses a tree structure to partition the feature
space
Random Forest - Uses an ensemble of trees with subsampling
of the feature vector
N-Tuple Neural Network (NTNN) - Aggregate observed
subsamples of the feature vector
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N-Tuple Neural Networks (NTNN)

NTNNs can be interpreted through the framework of relational
algebra:

Transform each sample s into a feature vector x of length N

Let J1, . . . , JM be index sets or patterns of uniform length P,
that is, subsets of the set {0, . . . ,N − 1}
Maintain tables Tmc - one for each pattern Jm and class c ∈ C

Given a feature vector x , the projection k = πmc(x) is stored
in Tmc

For each observed value k , a count ck of the number of times
k was observed is stored in Tmc

During classification, assign s to class c ′ if∑
m∈M Tmc ′(s) >

∑
m∈M Tmc(s) for all classes c 6= c ′.

Choice of patterns can be optimized through a greedy
algorithm
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NTTN - Example

Consider an NTNN with the parameters N = 5, M = 2, and
P = 3. The table below represents the NTNN table entries for
class 0 after training on the first 3 samples:

s J0 π00 T00

〈−4,−1, 5, 2, 3〉
(0, 2, 4)

(−4, 5, 3) (−4, 5, 3) 7→ 2
〈−4,−7, 5, 2, 3〉 (−4, 5, 3) (−2, 6, 1) 7→ 1
〈−2,−1, 6, 3, 1〉 (−2, 6, 1)

s J1 π10 T10

〈−4,−1, 5, 2, 3〉
(1, 2, 3)

(−1, 5, 2) (−1, 5, 2) 7→ 1
〈−4,−7, 5, 2, 3〉 (−7, 5, 2) (−7, 5, 2) 7→ 1
〈−2,−1, 6, 3, 1〉 (−1, 6, 3) (−1, 6, 3) 7→ 1
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Evaluation and Analysis

If the classes are balanced, then accuracy is the preferred measure
of classification performance. The accuracy A of the model M(f ),
trained with respect to the feature vector f , over the test set Sv , is
calculated as:

A(M(f ), Sv ) =
|True Positives(Sv )|+ |True Negatives(Sv )|

|Sv |



Introduction ML Approach ML CDP Further Applications References

Solving the CDP via Machine Learning

Solving the Conjugacy Decision Problem via Machine
Learning[3]

Paper

Jonathan Gryak, Robert M. Haralick, and Delaram Kahrobaei.
Solving the Conjugacy Decision Problem via Machine Learning.
Experimental Mathematics, 1–13, 2018.
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Conjugacy Decision Problem

Conjugacy Decision Problem

Given a group G and elements u, v ∈ G , the conjugacy decision
problem asks if ∃z ∈ G such that u = zvz−1
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Data Generation

Each dataset consists of 20,000 pairs of words in normal form, with
two 10,000 pair halves that are generated via the following
procedures:

1 Random Non-Conjugate Word Pairs in Normal Form - For
each n ∈ [5, 1004] we generate two words u, v representing
elements in G , with |u| = |v | = n. To verify that u is not
conjugate to v , the method of Kapovich et al. [6] is used.

2 Random Conjugate Word Pairs in Normal Form - For
n ∈ [5, 1004] we generate a pair of words v , z representing
element in G with |v | = |z | = n. Each word v , z is generated
uniformly and randomly as above. After v and z are
generated, the word u = v z is formed, and the tuple (u, v) is
added to the dataset.

This process is repeated 10 times for each n.
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Additional Datasets

To better evaluate the performance of our classifiers, we generated
additional data sets with varying ranges of lengths:

Collection Conjugate Pair (u, v = ut) Non-Conjugate Pair (u, v)

D0 |u| = |t| = l ; l ∈ [5, 1004] |u| = |v | = m; m ∈ [5, 1004]

D1 |u| = |t| = l ; l ∈ [5, 1004] |u| = m, |v | = n; m, n ∈ [5, 1004]

D2 |u| = l ,|t| = p; l , p ∈ [5, 1004] |u| = m, |v | = n; m, n ∈ [5, 1004]

D3 |u| = l ,|t| = p; l , p ∈ [5, 1004]
|u| = m, |v | = n; m ∈ [5, 1004]

n ∈ [minD2 ,maxD2 ]

where minD2 (maxD2) correspond to the minimum (maximum)
word length in a conjugate pair for the data set D2
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Feature Vectors

Given a group G and words u, v ∈ G , we concatenate the unit
feature vectors n0 and n1 to create two derived feature vectors for
the conjugacy decision problem:

c0 = 〈n0(u) ‖ n0(v)〉
c1 = 〈n1(u) ‖ n1(v)〉

The default feature vector for tree-based classifiers is c1 (weighted
normal forms), while for NTNNs it is c0 (unweighted normal
forms).
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Model Selection

We tested all three classification models with the following
parameters:

Decision Tree and Random Forests:

Both Gini impurity and information gain were evaluated.
Having no depth limit or pre-pruning to a depth of log2Si − 1
were both tested.

NTNN:

The number of patterns M was tested over the range
{10, 20, 30, 50, 100}.
The initial size P of the patterns was set to 3, with sizes in the
range [3, 5] tested where applicable.
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BS(1,2)

The Baumslag-Solitar group BS(1,2) is given by the presentation
below:

BS(1, 2) = 〈a, b | bab−1a−2〉.

The group has the normal form

n0 = b−e1ae2be3 ,

with e1, e3 ≥ 0 and if e1, e3 > 0 then e2 is not divisible by 2.
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Non-Virtually Nilpotent Polycyclic Groups

These non-virtually nilpotent polycyclic groups can be constructed
by using the MaximalOrderByUnitsPcpGroup function of the
GAP Polycyclic package [2]:

O o U14 - Given the polynomial f = x9 − 7x3 − 1,
MaximalOrderByUnitsPcpGroup returns a group with a
Hirsch length of 14.

O o U16 - Given the polynomial f = x11 − x3 − 1,
MaximalOrderByUnitsPcpGroup returns a group with a
Hirsch length of 16.

O o U34 - Given the polynomial f = x23 − x3 − 1,
MaximalOrderByUnitsPcpGroup returns a group with a
Hirsch length of 34.
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GMBS(2,3)

The generalized metabelian Baumslag-Solitar[4] group GMBS(2,3)
given by the following presentation:

GMBS(2, 3) = 〈q1, q2, b | bq1 = b2, bq2 = b3, [q1, q2] = 1〉.

Elements in GMBS(2,3) can be uniquely written in the following
normal form:

n0 = q−e11 q−e22 be3qe41 qe52 ,

with e1, e2, e4, e5 ≥ 0, 2 - e3 if e1, e4 > 0, and 3 - e3 if e2, e5 > 0.
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SL(2,Z)

The set of 2× 2 integral matrices with determinant 1 forms the
group SL(2,Z) under matrix multiplication.

SL(2,Z) was implemented in GAP with a dual representation: For
each element x ∈ SL(2,Z) we have the following pair x = (m,w)
of the form

m =

[
a b
c d

]
,w = w1 · · ·wn,wi ∈ {S±1,R±1},

with a, b, c , d ∈ Z such that ad − bc = 1, and S and R
corresponding to the matrices below that generate SL(2,Z):

S =

[
0 −1
1 0

]
,R =

[
0 −1
1 1

]
.



Introduction ML Approach ML CDP Further Applications References

Performance on Different Datasets

Despite the changes in word lengths within each data collection,
classification accuracy was maintained:

Data Collection
Group D0 D1 D2 D3

BS(1,2) 93.64% (Fe) 93.20% (Fg ) 95.30% (Fe) 98.86% (Fe)

O o U14 98.77% (Nl) 98.67% (Fed) 98.38% (Fed) 99.75% (Nl)

O o U16 98.46% (Ns) 97.24% (Fed) 96.65% (Fed) 99.11% (Fg )

O o U34 99.50% (Nl) 98.72% (Fed) 98.28% (Fed) 99.29% (Nl)

GMBS(2,3) 96.49% (Fe) 95.22% (Fe) 96.45% (Ns) 99.13% (Fgd)

SL(2,Z) 99.81% (Nl) 99.91% (Fg ) 93.89% (Fe) 97.38% (Fg )
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Further Applications

Thus we have shown the following:

A general method for applying machine learning to problems
in non-free groups

The conjugacy decision problem can be solved using machine
learning with high accuracy

Further applications:

2 Exploring Algebraic (Sub)structure

3 Choosing the Best Algorithm

4 Heuristics/Metrics for Search Problems
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Exploring Algebraic Structure

Use discrete, interpretable supervised learning models (e.g.,
NTNN, Decision Trees) for classification

Use unsupervised learning models for clustering (e.g.,
K-means clustering)

Use higher order features to explore superstructure
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Choosing the Best Algorithm

Use classifiers to determine whether an object is a member of
a particular class with better algorithms (e.g., hyperbolic
group, automatic group)
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Heuristics/Metrics for Search Problems

Use metric learning (e.g., ITML [1]) to determine lengths in
an appropriate space

For search problems, use regression models (e.g., NTRN) to
produce estimate that can act as an initial seed for
heuristic-based search (e.g., local conjugacy search over the
Cayley graph)
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Questions?

Your questions and comments, please.
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