
Optimising Cylindrical
Algebraic Decomposition
using Machine Learning
Rohit John & Prof. James Davenport
24/07/2024

Talk content

● Intro to CAD and variable ordering
● Current heuristics for optimising CAD
● Data and feature sets used
● Possible data leakage
● Implementation of ML heuristics
● Results of ML experiments
● Additional improvements & future work

What is Cylindrical Algebraic Decomposition?

• Used for solving polynomial systems and quantifier elimination.

• Efficiently breaks down multi-dimensional spaces into simpler,
sign invariant regions (cells) which can then be checked if the
quantified formula holds.

• Applied in various scientific disciplines such as robotics,
epidemics and economics.

An example of CAD in use

Variable Ordering in CAD

● CAD’s doubly exponential complexity means it quickly becomes intractable as
variable size increases.

● However this can be mitigated by the order in which variables are decomposed,
which is decided by the mathematician

Example of the difference variable ordering
can make for x3y + 4x2 + xy, −x2 + 2xy − 1

● Various heuristics have been suggested for variable ordering such as
Brown, sotd & ndrr.

● Browns heuristic is based off information derived from the polynomial
and works as follows -

Eliminate variables in the following order:

1. it has lower overall degree in the input;

2. it has lower (maximum) total degree of those terms in the input in which it
occurs;

3. there is a smaller number of terms in the input which contain the variable

Manual heuristics

Machine Learning based heuristics

● Previous literature has explored using ML models to select heuristics and
directly select orderings.

● The first implementation used SVM to determine which heuristic to use
(Huang et al, 2014).

● Current work focuses on directly selecting optimal orderings.
● Recently Reinforcement Learning with Graph Neural Networks have been

used to select orderings for CAD’s of varied size (Jia et al, 2024).

Graph Neural Networks

● While effective, general ML models only work for fixed polynomial sizes.
● GNN is a ML model which operates on graphs of varying sizes
● This representation can be used for graph, node and link classification, of which we

implemented graph and node prediction.

Representing polynomials as graphs

● Each variable acted as a node, and an edge existed between two nodes if the
corresponding variables appeared in the same polynomial.

Graph for the polynomial set x1
2+x₂2+5, x2x3-10

x1

x2

x3

Aims for this project

● Gain an understanding of CAD and the heuristics used for variable ordering.
● Implement efficient and accurate ML models for selecting fixed variable orderings.
● Develop and implement a model which can select orderings for polynomials of

different variable sizes.

Datasets

● We explored various datasets to use in our experiments, eventually deciding upon
augmented-metitarski, based of the original MetiTarski theorem solver.

● The polynomials were then converted into graph form using the method described
previously.

● The dataset had flaws in its labelling of lowest orderings, with 15% of entries having
duplicate lowest times and cells,

Data Leakage Exploration

● The augmenting authors permuted the variables in each equation, leading to a
perfectly balanced dataset.

● The data was then shuffled before training, leading to permutations of equations
appearing in both sets and significant data pollution occuring.

● We experimented with 4 variants of this dataset which we will call “original”,
“augmented”, “shuffled” and “balanced”.

X1
X2
X3
Y1
Y2
Y3

Z1
Z2
Z3

Y2
X3
Z3
Y1
X1
Z2

Y3
X2
Z1

X1
Y3

Z2

X1
Y1

Z2

Original - the original
biased dataset

extracted from Tarski

Augmented - an expanded
dataset where every

polynomial permutation is
included.

Balanced - a dataset the same size as
unbalanced but with equal label

distribution.

Shuffled - the currently
existing dataset used in
augmented-metitarski.

.

.

.

.

.
.
.

.

.

.

X1 - X represents a polynomial set, 1 represents ordering x1 -> x2 ->x3
being the optimal variable ordering.

Data leakage results

Original - the original biased
dataset extracted from Tarski

Balanced - a dataset the same
size as unbalanced but with
equal label distribution.

Augmented - an expanded
dataset where every
polynomial permutation is
included.

Shuffled - the currently
existing dataset used in
augmented-metitarski.

Feature Sets
● The initial set consists of 11 features and has been used in various experiments, starting

with Huang.
● GNN requires a feature set for each variable which was implemented using Jia’s feature

set.

Extended feature set
● We additionally experimented with an extended feature set to compare with the original.
● This was generated by merging the 12 features of each variable in our GNN feature set

to create 36 total features.

x1

x2

x3
f1
f2
…
f12 f1

f2
…
f12

f1
f2
…
f12

f1
f2
f3
…
f35
f36

Implementing ML models

● Implemented common ML models (LR, KNN, DT etc.)
● SVM were initially implemented but were later removed due to long training times.
● Classification and Regression FFN models were also implemented.

x1

x2

x3

GNN implementation

● GNN implementation began by classifying each graph into one of 6 possible
orderings, however this model did not greatly utilise the graph representation.

● The model was then trained to assign a position in the orderings to each node in the
graph.

Optimal ordering
x2 -> x1 ->x3

x1

x2

x3Pos. 2 Pos. 3

Pos. 1

Optimal ordering
x2 -> x1 ->x3

ML Results using accuracy

● FFN classification was the most effective.
● Using extended features has a small but

consistent advantage.
● GNN were less effective than other

models, but more effective than Brown.
● When measuring accuracy Regression

performed worse than expected.

Measuring accuracy

Results using average time

● Linear regression performs
poorly but is significantly
improved by using extended
features.

● Regression performs the best
when using average time
metrics.

Results using average cells

What I’ve learnt

● Datasets matter - I initially chose my dataset based off recency and without
thorough checking which might have prevented the described problems.

● Data leakage and best practices in ML - sometimes common practices in data
science (shuffling datasets before splitting) can lead to misleading results and should
not be applied blindly.

● Metrics are difficult to compare - our results can be interpreted differently when
certain metrics are used, and so metrics should always take into account

Final notes

● The updated dataset and code used for these experiments can be found at
https://github.com/rohitpj/New_ML_Models_for_CAD

● We used additional metrics of average time and average cell count in our
experiments, details of which can be found in my dissertation available above.

● However more complex polynomials can greatly outweigh others so we suggest
using normalised time differences between lowest and suggested ordering.

https://github.com/rohitpj/New_ML_Models_for_CAD

	Optimising Cylindrical Algebraic Decomposition using Machine Learning
	Talk content
	What is Cylindrical Algebraic Decomposition?	
	Variable Ordering in CAD	
	Manual heuristics
	Machine Learning based heuristics	
	Graph Neural Networks	
	Representing polynomials as graphs		
	Aims for this project	
	Datasets
	Data Leakage Exploration	
	Slide Number 12
	Data leakage results
	Feature Sets
	Extended feature set
	Implementing ML models
	GNN implementation
	ML Results using accuracy
	Results using average time
	Results using average cells
	What I’ve learnt
	Final notes

