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Talk content

● Intro to CAD and variable ordering
● Current heuristics for optimising CAD
● Data and feature sets used
● Possible data leakage
● Implementation of ML heuristics
● Results of ML experiments
● Additional improvements & future work



What is Cylindrical Algebraic Decomposition?

• Used for solving polynomial systems and quantifier elimination.

• Efficiently breaks down multi-dimensional spaces into simpler, 
sign invariant regions (cells) which can then be checked if the 
quantified formula holds.

• Applied in various scientific disciplines such as robotics, 
epidemics and economics.

An example of CAD in use



Variable Ordering in CAD

● CAD’s doubly exponential complexity means it quickly becomes intractable as 
variable size increases.

● However this can be mitigated by the order in which variables are decomposed, 
which is decided by the mathematician

Example of the difference variable ordering 
can make for x3y + 4x2 + xy, −x2 + 2xy − 1



● Various heuristics have been suggested for variable ordering such as 
Brown, sotd & ndrr.

● Browns heuristic is based off information derived from the polynomial 
and works as follows -

Eliminate variables in the following order:

1. it has lower overall degree in the input; 

2. it has lower (maximum) total degree of those terms in the input in which it 
occurs; 

3. there is a smaller number of terms in the input which contain the variable

Manual heuristics



Machine Learning based heuristics

● Previous literature has explored using ML models to select heuristics and 
directly select orderings.

● The first implementation used SVM to determine which heuristic to use 
(Huang et al, 2014).

● Current work focuses on directly selecting optimal orderings.
● Recently Reinforcement Learning with Graph Neural Networks have been 

used to select orderings for CAD’s of varied size (Jia et al, 2024).



Graph Neural Networks

● While effective, general ML models only work for fixed polynomial sizes.
● GNN is a ML model which operates on graphs of varying sizes 
● This representation can be used for graph, node and link classification, of which we 

implemented graph and node prediction.



Representing polynomials as graphs

● Each variable acted as a node, and an edge existed between two nodes if the 
corresponding variables appeared in the same polynomial.

Graph for the polynomial set x1
2+x₂2+5,  x2x3-10
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Aims for this project

● Gain an understanding of CAD and the heuristics used for variable ordering.
● Implement efficient and accurate ML models for selecting fixed variable orderings.
● Develop and implement a model which can select orderings for polynomials of 

different variable sizes.



Datasets 

● We explored various datasets to use in our experiments, eventually deciding upon 
augmented-metitarski, based of the original MetiTarski theorem solver.

● The polynomials were then converted into graph form using the method described 
previously.

● The dataset had flaws in its labelling of lowest orderings, with 15% of entries having 
duplicate lowest times and cells,



Data Leakage Exploration

● The augmenting  authors permuted the variables in each equation, leading to a 
perfectly balanced dataset.

● The data was then shuffled before training, leading to permutations of equations 
appearing in both sets and significant data pollution occuring.

● We experimented with 4 variants of this dataset which we will call “original”, 
“augmented”, “shuffled” and “balanced”.
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Original - the original 
biased dataset 

extracted from Tarski

Augmented - an expanded 
dataset where every 

polynomial permutation is 
included.

Balanced - a dataset the same size as 
unbalanced but with equal label 

distribution.

Shuffled - the currently 
existing dataset used in 
augmented-metitarski.
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X1 - X represents a polynomial set, 1 represents ordering x1 -> x2 ->x3 
being the optimal variable ordering.



Data leakage results

Original - the original biased 
dataset extracted from Tarski

Balanced - a dataset the same 
size as unbalanced but with 
equal label distribution.

Augmented - an expanded 
dataset where every 
polynomial permutation is 
included.

Shuffled - the currently 
existing dataset used in 
augmented-metitarski.



Feature Sets
● The initial set consists  of 11 features and has been used in various experiments, starting 

with Huang.
● GNN requires a feature set for each variable which was implemented using Jia’s feature 

set.



Extended feature set
● We additionally experimented with an extended feature set to compare with the original.
● This was generated by merging the 12  features of each variable in our GNN feature set 

to create 36 total features.

x1

x2

x3
f1
f2
…
f12 f1

f2
…
f12

f1
f2
…
f12

f1
f2
f3
…
f35
f36



Implementing ML models

● Implemented common ML models (LR, KNN, DT etc.)
● SVM were initially implemented but were later removed due to long training times.
● Classification and Regression FFN models were also implemented.
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GNN implementation

● GNN implementation began by classifying each graph into one of 6 possible 
orderings, however this model did not greatly utilise the graph representation.

● The model was then trained to assign a position in the orderings to each node in the 
graph. 

Optimal ordering 
x2 -> x1 ->x3
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Optimal ordering 
x2 -> x1 ->x3



ML Results using accuracy

● FFN classification was the most effective.
● Using extended features has a small but 

consistent advantage.
● GNN were less effective than other 

models, but more effective than Brown.
● When measuring accuracy Regression 

performed worse than expected.

Measuring accuracy



Results using average time

● Linear regression performs 
poorly but is significantly 
improved by using extended 
features.

● Regression performs the best 
when using average time 
metrics.



Results using average cells



What I’ve learnt

● Datasets matter - I initially chose my dataset based off recency and without 
thorough checking  which might have prevented the described problems.

● Data leakage and best practices in ML - sometimes common practices in data 
science (shuffling datasets before splitting) can lead to misleading results and should 
not be applied blindly.

● Metrics are difficult to compare - our results can be interpreted differently when 
certain metrics are used, and so metrics should always take into account 



Final notes

● The updated dataset and code used for these experiments can be found at 
https://github.com/rohitpj/New_ML_Models_for_CAD

● We used additional metrics of average time and average cell count in our 
experiments, details of which can be found in my dissertation available above.

● However more complex polynomials can greatly outweigh others so we suggest 
using normalised time differences between lowest and suggested ordering.

https://github.com/rohitpj/New_ML_Models_for_CAD
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