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Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool, both for quantifier elimination over the reals and a range of other
applications. Traditionally, a CAD is built through a process of projec-
tion and lifting to move the problem within Euclidean spaces of changing
dimension. Recently, an alternative approach which first decomposes com-
plex space using triangular decomposition before refining to real space has
been introduced and implemented within theRegularChains Library of
Maple. We here describe a freely available package ProjectionCAD which
utilises the routines within the RegularChains Library to build CADs
by projection and lifting. We detail how the projection and lifting algo-
rithms were modified to allow this, discuss the motivation and survey the
functionality of the package.

1 Introduction

A cylindrical algebraic decomposition (CAD) is: a decomposition of Rn, meaning
a collection of cells which do not intersect and whose union is R

n; cylindrical,
meaning the projections of any pair of cells with respect to a given variable
ordering are either equal or disjoint; and, (semi)-algebraic, meaning each cell can
be described using a finite sequence of polynomial relations. CAD is best known
for quantifier elimination over the reals, but has also found diverse applications
such as motion planning [25] and reasoning with multi-valued functions [13].

The RegularChains Library [26] in Maple contains procedures to build
CAD by first building a complex cylindrical decomposition (CCD) of Cn using
triangular decomposition by regular chains, then refining to a CAD of Rn. The
core algorithm was developed in [11] with improvements detailed in [10] and [3].

These CAD algorithms are in contrast to the traditional approach of pro-
jection and lifting followed since Collins’ original work [12]. Here, a projection
phase repeatedly applies an operator to a set of polynomials (starting with those
forming the input) each time producing another set in one fewer variables. Then
the lifting phase builds CADs of Ri, i = 1 . . . n. R is decomposed into points
and intervals corresponding to the real roots of the univariate polynomials. R2

is decomposed by repeating the process over each cell in R
1 using the bivariate

polynomials at a sample point. The output over each cell consists of sections

H. Hong and C. Yap (Eds.): ICMS 2014, LNCS 8592, pp. 458–465, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Using the RegularChains Library to Build CADs 459

(where a polynomial vanishes) and sectors (the regions between) which together
form a stack. The union of these stacks gives the CAD of R2 and the process is
repeated until a CAD of Rn is produced. Collins defined the projection operator
so the CAD of Rn produced using sample points this way could be concluded
sign-invariant for the input polynomials: each polynomial has constant sign on
each cell. The key tool in the proof was showing polynomials to be delineable in
a cell, meaning the zero set of individual polynomials are disjoint sections and
the zero sets of different polynomials are identical or disjoint. For developments
to Collins’ algorithm see for example the introduction of [4].

We use PL-CAD for CADs built by projection and lifting and RC-CAD for CADs
built via CCDs. We will discuss a freely available Maple package Projection-
CAD which builds PL-CADs by utilising routines developed for RC-CAD. We con-
tinue in Section 2 by describing the motivation for coupling these approaches
before explaining the workings of the package in Section 3 and describing the
current functionality in Section 4. Earlier versions of the package can be down-
loaded alongside [14] [15], with the latest version available from the authors.
There are plans for its integration into the RegularChains Library [26] itself.

2 Motivation

ProjectionCAD uses routines in the RegularChains Library to build cells
in the lifting phase. The advantages of utilising the routines are multiple:

– It avoids many costly algebraic number calculations by using efficient algo-
rithms for triangular decomposition. When algebraic numbers are required
(as sample points for lower dimension cells) they are represented as the
unique root of a regular chain in a bounding box.

– It ensures ProjectionCAD will always use the best available sub-algorithms
in Maple, such as the recently improved routines for real root isolation.

– It allows ProjectionCAD to match output formats with the RC-CAD algo-
rithms. In particular, it allows for the use of the sophisticated piecewise
interface [9] which highlights the tree-like structure of a CAD.

The ProjectionCAD package was developed to implement new theory for
PL-CAD, most notably the work in [4], [5], [6] and [24]. More details of the func-
tionality are given in Section 4. However, it has also allowed for easy comparison
of PL-CAD and RC-CAD, leading to new developments for RC-CAD [3] [16]. A future
aim is identification of problem classes suitable for one approach or the other.

3 CAD Construction in ProjectionCAD

The pseudo code in Algorithm 1 describes the framework which the main algo-
rithms in ProjectionCAD follow. They apply to either polynomials or formu-
lae. If the former then the CAD produced is sign-invariant for each polynomial.
If the latter then each formula will have constant Boolean truth value on each
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cell and the CAD is said to be truth table invariant for the formulae: a TTI-
CAD. The user may also have to supply additional information (such as which
projection operator to use or which equational constraint to designate [21]). All
algorithms require a specified variable ordering, which can have a significant af-
fect on the tractability of using CAD [8]. We use ordered variables x1 ≺ . . . ≺ xn

and say the main variable is the highest ordered variable present.

Algorithm 1. PL-CAD

Input : A variable ordering x1 ≺ . . . ≺ xn and F a sequence of
polynomials (or quantifier-free formulae).

Output: A CAD of Rn sign-invariant for the polynomials (or truth
invariant for the formulae) F ; or FAIL if F is not well-oriented.

1 Run the projection phase using an appropriate projection operator on F .
2 for i = 1, . . . , n do
3 Assign to Pi the set of projection polynomials with main variable xi.

4 Set C1 to be a CAD of R1 formed by the decomposition of the real line
according to the real roots of the polynomials in P1.

5 for i = 2, . . . , n do
6 for each cell c ∈ Ci−1 do
7 Check any necessary well-orientedness conditions.
8 if the input is not well oriented then
9 if dim(c) = 0 then

10 Assign to L a set containing the polynomials in Pi and any
(non-constant) minimal delineating polynomials.

11 else
12 return FAIL.

13 else
14 Set L := Pi.

15 Set Sc := GenerateStack(c, L). // Apply Algorithm 2.

16 Set Ci :=
⋃

c Sc.

17 return Cn.

All algorithms in ProjectionCAD start with a projection phase (step 1)
which uses a projection operator appropriate to the input to derive a set of
projection polynomials. In steps 2−3 we sort these into sets Pi according to
their main variables. The remainder of the algorithm defines the lifting phase.
We start by decomposing R

1 into cells according to the real roots of P1 (step 4)
and then repeatedly lift by generating stacks over cells until we have a CAD of
R

n. All cells are equipped with a sample point and a cell index. The index is an
n-tuple of positive integers that corresponds to the location of the cell relative to
the CAD. Cells are numbered in each stack during the lifting stage (from most
negative to most positive), with sectors having odd numbers and sections having
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even numbers. Therefore the dimension of a given cell can be easily determined
from its index: simply the number of odd indices in the n-tuple.

Before lifting over a cell we check any conditions necessary for the correctness
of the theory being implemented (step 7). These are collectively refereed to as
the input being well-oriented and require that projection polynomials are not
nullified (meaning a polynomial with main variable xi is not identically zero over
a cell in R

i−1). Which polynomials must be checked varies with the algorithm
(see [20], [21], [4], [5] for details). If the conditions are not satisfied then an error
message is returned in step 12, unless the cell in question is zero-dimensional
when correctness can be restored by generating the stack with respect to minimal
delineating polynomials (see [7]) as well as the projection polynomials in Pi (step
10). Note that input not well-oriented for one operator may be for another, and
that Collins’ operator is always successful (given sufficient resources).

Stacks are built by Algorithm 2 in step 15. These are collected together in step
16 to form a CAD of Ri, with the final CAD of Rn returned. The correctness of
Algorithm 1 follows from the correctness of Algorithm 2 and the correctness of
the various PL-CAD theories implemented (see the citations in Section 4).

Algorithm 2. Stacks are generated following Algorithm 2. It finishes with a call
to RegularChains:-GenerateStack, described in Section 5.2 of [11] (and imple-
mented in Maple’s RegularChains library). Algorithm 2 requires the input be
projection polynomials: implying they satisfy the delineability conditions neces-
sary for the cells produced when lifting to have the required invariance condi-
tion. The regular chains algorithm has stricter criteria, requiring in addition that
the polynomials separate above the cell, meaning they are coprime and squarefree
throughout. Hence Algorithm 2 must first pre-process to meet this condition.

In steps 1 and 2 we extract information from c. We identify those dimensions
of the cell which are restricted to a point by consulting the cell index (indices
with even integers) and collect together the equations defining these restrictions
in steps 3 − 7. There is no ambiguity in the ordering of the polynomials in E
since a regular chain is defined by polynomials of different main variables [1]. If
the cell is of full dimension then there is no need to process since the polynomials
are delineable and taken from a squarefree basis. Otherwise, we process using
Algorithms 3 and 4 in steps 10 and 11. The restriction is identified using a regular
chain r̂c (step 9) together with the original bounding box. Note that Ê defines
a single regular chain since the equations were extracted from one.

Algorithm 3. In order to make the polynomials coprime we use repeated calls
to a triangular decomposition algorithm in step 3 (described in [19] and part of
the RegularChains Library). Given lists of polynomials L1 and L2 and a regular
chain, it returns a decomposition of the zeros of L1 which are also also zeros of
the regular chain but not zeros of L2. We use r̂c for the regular chain, so we
work on the restriction, and build up a list of coprime polynomials by ensuring
existing ones (L2) are not zeros in decompositions of the next one (L1). Each
time the decomposition is a list of either regular chains or regular systems (a
regular chain and an inequality regular with respect to the chain [23]).
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Algorithm 2. GenerateStack

Input : A cell c from a CAD of Rk and a set P of projection
polynomials in x1 . . . xk+1 (part of a squarefree basis).

Output: A set of cells S of Rk+1 comprising a stack over c. The
polynomials in P are sign-invariant on each cell of S.

1 Set I and sp to be the cell index and sample point of c.
2 Set rc and bb to be the regular chain and bounding box encoding sp.
3 Set E to be the set of k polynomials whose zeros define rc, ordered by
increasing main variable.

4 Set Ê := { }.
5 for i = 1, . . . , k do
6 if the i’th integer in I is even then

7 Add the ith polynomial in E to Ê.

8 if Ê �= { } then

9 Set r̂c to be the regular chain formed by Ê.

10 P̂ := MakeCoprime(P, r̂c, c). // Apply Algorithm 3.

11 P̂ := MakeSquareFree(P, r̂c, c). // Apply Algorithm 4.

12 S := RegularChains:-GenerateStack(c, P̂ , k + 1) // From [11].

13 return S.

Algorithm 3. MakeCoprime

Input : A set of polynomials P , a regular chain r̂c and a cell c.
Output: A set of polynomials P̂ which describe the same set of varieties,

but which are coprime over c.

1 Set P̂ = { }.
2 for polynomial p ∈ P do

3 T := Triangularize([p], P̂ , r̂c). // From [19].

4 for component C of T do
5 if mvar(C) �= mvar(p) then
6 next C.
7 if C has a zero compatible with the sample point of c then

8 Add the polynomial in C with same main variable as p to P̂ .

9 return P̂ .

We consider each of these components in turn. If the main variable is lower
then the solution is discarded. Otherwise we check if the component has a so-
lution compatible with the sample point for the cell (as it may be a solution
of r̂c other than one isolated by bb). This means isolating the real solutions (of
the component excluding the top dimension) and refining their bounding boxes
until they are either within bb or do not intersect at all. It is achieved using the
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RealRootIsolate command in the RegularChains Library (see [2]). Finally if
the component passes these tests then the polynomial in the main variable is
extracted and added to the set returned from Algorithm 3 in step 8.

Algorithm 4. In order to make the polynomials squarefree we use repeated
calls to an algorithm which does this modulo a regular chain (r̂c: so that we
are working on the restriction). It is an analogue of Musser’s [22] with the gcd
calculations performed modulo the regular chain as described in [18]. It assumes
the polynomial is regular modulo the chain and so we first test for this. If not
regular (the leading coefficient vanishes) then we consider the tail (polynomial
minus the leading term) in step 5, if still in the main variable. The output of
the factorization is either: rc and a list of polynomials forming a squarefree
decomposition of p modulo rc; or a list of pairs of regular chains and squarefree
decompositions where the regular chains are a decomposition of rc. In the latter
case only one will be relevant for the root isolated by bb and we identify which
using the RealRootIsolate command, similarly to Algorithm 3.

Algorithm 4. MakeSquareFree

Input : A set of polynomials P , a regular chain r̂c and a cell c.
Output: A set of polynomials P̂ which describe the same set of varieties,

but which are each squarefree over c.

1 Set P̂ = { }.
2 while P is not empty do
3 Remove a polynomial p from P .
4 if p is not regular over r̂c then
5 Set p̂ = tail(p)
6 if mvar(p̂) = mvar(p) then
7 Add p̂ to P and continue from step 2.

8 T := SquarefreeFactorization(p, r̂c).
9 Select C as the component in T compatible with the sample point of c.

10 Set p̂ to be the product of polynomials in the decomposition in C.
11 Add p̂ to P̂ .

12 return P̂ .

4 Functionality of ProjectionCAD

We finish by listing some of the functionality of within ProjectionCAD, fo-
cusing on aspects not usually found in other CAD implementations:

– Sign-invariant CADs can be built using the Collins [12] or McCallum [20]
projection operators.

– CADs can be built with the stronger property of order-invariance (where
each polynomial has constant order of vanishing on each cell) [20].
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– Equational constraints (ECs) are equations logically implied by the formula.
They can be utilised via McCallum’s reduced projection [21] and a more
efficient lifting phased (detailed in Section 5 of [5]).

– TTICADs can be built for sequences of formulae, making use of ECs in each
[4] [5]. TTICAD can be both a desired structure for applications [17] and an
efficient way to build a truth-invariant CAD (allowing savings from ECs for
conjunctive sub-formulae, not ECs of the whole formula).

– Minimal delineating polynomials [7] are built automatically, avoiding un-
necessary failure declarations (which can occur in Qepcad). See [14] for an
example of this.

– User commands for stack generation and the construction of induced CADs
(a CAD of Ri, i < n produced en route to a CAD of Rn), allowing for easy
experimentation with the theory.

– Layered CADs contain cells of only a certain dimension or higher. They can
be produced (more efficiently than a full CAD) [24].

– Variety CADs contain only those cells that lie on the variety defined by an
EC. They can be produced (more efficiently than a full CAD) [24].

– Layered and manifold TTICADs as well as layered-manifold CADs can be
produced [24] (combining the savings from the different theories).

– Heuristics are available to help with choices such as variable ordering, EC
designation and breaking up parent formulae for TTICAD [6].

Details can be found in the citations above and the technical reports [14], [15].
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