An iterated greedy algorithm with variable reconstruction size for the obnoxious p-median problem

Seyed Mousavi ${ }^{\text {a,* }}$ (${ }^{\text {(}}$, Soni Bhambar ${ }^{\text {b }}$ and Matthew England ${ }^{\text {b }}$ (D)
${ }^{a}$ School of Computing, Mathematics and Data Sciences, Coventry University, Coventry CV1 5FB, UK
${ }^{\mathrm{b}}$ Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK
E-mail: Seyed.Mousavi@coventry.ac.uk [Mousavi]; bhambars@uni.coventry.ac.uk [Bhambar]; Matthew.England@coventry.ac.uk [England]

Received 19 December 2022; received in revised form 15 May 2023; accepted 31 May 2023

Abstract

The obnoxious p-median problem is a facility location problem where we maximise the sum of the distances between each client point and its nearest facility. Since it is nondeterministic polynomial-time (NP)-hard, most algorithms designed for the problem follow metaheuristic strategies to find high-quality solutions in affordable time but with no optimality guarantee. In this paper, a variant of the iterated greedy algorithm is developed for the problem. It adopts the idea of increasing the search radius used in variable neighbourhood search by increasing the number of reconstructed components at each iteration with no improved solution, where the amount of the increase is determined dynamically based on the quality of the current solution. We demonstrate that the new algorithm significantly outperforms the current state-of-the-art metaheuristic algorithms for this problem on standard datasets.

Keywords: facility location; hybrid metaheuristic; iterated greedy; obnoxious p-median problem; p-median problem

1. Introduction

The obnoxious p-median (OpM) problem is to locate a given number of facilities such that the sum of the distances between each client point and its nearest facility is maximised. It is similar to the p-median (pM) problem where we instead minimise that sum. The OpM problem has numerous real-world applications where the facilities, although useful, are unpleasant (hence obnoxious) to nearby clients. Examples of such facilities include garbage collection points in residential areas and the positioning of airports (obnoxious due to their air and sound pollution). Another example, by Chang et al. (2021), is the location of quarantine sites during pandemics. These sites should be far from residential areas to reduce the chance of infections. Among other applications of this
*Corresponding author.
problem are the location of chemical and nuclear sites (Gökalp, 2020), hazardous waste disposal facilities, and high-voltage electrical transmission stations (Church and Drezner, 2022). Therefore, solving the OpM problem can potentially benefit people in a wide variety of ways. In addition, any algorithm for this problem can be a potential algorithm, via minor adjustments, for the pM problem because of their similarity.

1.1. Prior work

Research on this problem and its variants began in the last century when optimal solutions were sought (Church and Garfinkel, 1978; Erkut and Neuman, 1989; Plastria, 1996). However, the problem is NP-hard (Tamir, 1991), which means there exists no polynomial-time exact algorithm unless $\mathrm{P}=\mathrm{NP}$. Therefore, more recent research has focused on inexact algorithms, in particular those following metaheuristic strategies, to find (high-quality) feasible solutions in affordable time but with no optimality guarantee (Belotti et al., 2007; Colmenar et al., 2016a; Lin and Guan, 2018; Gökalp, 2020; Herrán et al., 2020; Mladenović et al., 2020).

Belotti et al. (2007) proposed a variant of tabu search (TS) called eXploring TS (X-TS), in addition to an exact branch and cut algorithm. Colmenar et al. (2016a) improved on the X-TS algorithm by proposing a Greedy Randomised Adaptive Search Procedure (GRASP) equipped with further mechanisms. For example, they used a filtering method to avoid local search on low-quality solutions. They also maintained for each client two sorted lists of open and closed facilities to speed up their local search. Herrán et al. (2020) proposed an improved algorithm together with its parallel version based on variable neighbourhood search (VNS). Among useful ideas in their work was to decouple the facility swap operation used in Colmenar et al. (2016a) into two single operations of dropping and adding a facility. Then, by using different orders of these two operations, they obtained two different local search procedures. The decoupling idea was also used in Lin and Guan (2018), where a hybrid of binary particle swarm optimisation and iterated greedy (IG) algorithms was proposed to improve on the GRASP algorithm of Colmenar et al. (2016a). Mladenović et al. (2020) also used a basic VNS algorithm based on the so-called less-is-more-approach (Mladenović et al., 2016). They showed that the resulting algorithm was superior to the GRASP algorithm of Colmenar et al. (2016a) and competitive with the VNS metaheuristic algorithm of Herrán et al. (2020).

Gökalp (2020) extended the IG algorithm presented by Lin and Guan (2018) and further enhanced it by applying the local search procedures proposed by Herrán et al. (2020). He showed his algorithm outperformed the VNS algorithm of Herrán et al. (2020). Most recently, another TS method was proposed by Chang et al. (2021). It was not compared with the IG algorithm of Gökalp (2020) but was shown to outperform the other state-of-the-art metaheuristic algorithms at the time.

Thus, to the best of our knowledge, the current state-of-the-art metaheuristic algorithms for the problem are the IG of Gökalp (2020) and the TS of Chang et al. (2021).

For a review of the existing models for the problem and its historical overview, the interested reader is referred to Church and Drezner (2022).

[^0]
1.2. Our contribution

The algorithm proposed in the present paper is a variant of IG with variable reconstruction size. It incorporates the idea of increasing the neighbourhood radius (for diversification) used in VNS by increasing the number of reconstructed components. However, in contrast to the standard VNS approach where the amount of the increase is fixed, in our proposed algorithm, it is variable and determined dynamically at run time. The new algorithm also generalises the idea of applying an additional pair of construction and deconstruction operations used in Herrán et al. (2020) and Gökalp (2020) to improve the solution quality. More specifically, in contrast to Herrán et al. (2020) and Gökalp (2020), its construction and deconstruction operators are not limited to a local search stage or a fixed number of components. In addition, it uses two data structures not previously proposed in the literature of OpM , to the best of our knowledge.

Although it hybridises several ideas and operations, the overall algorithm is actually simpler than the state-of-the-art metaheuristic algorithms as it is centred on the unit operations of opening and closing a facility with no additional local search. We demonstrate that the proposed algorithm outperforms the current state-of-the-art metaheuristic algorithms for the OpM problem on standard datasets, with extremely low p-value $<10^{-8}$.

The rest of the paper is organised as follows. Section 2 presents the formal problem definition and the basic notations used in the paper. Then the new proposed algorithm is described in Section 3. Section 4 explains the auxiliary data structures used in the implementation and analyses the time complexity of the facility opening and closure operators. Experimental results are reported in Section 5 including a thorough comparison with the existing state of the art on standard datasets. Finally, the paper is concluded with potential future work outlined in Section 6.

2. Notation and problem definition

Let $I=\{1, \ldots, n\}$ and $J=\{1, \ldots, m\}$ be sets of clients and facilities, respectively, and let $d_{i j}$ be the distance between client $i \in I$ and facility $j \in J$. An instance of the OpM problem is then represented by (D, p), where $D=\left[d_{i j}\right]_{n \times m}$ is the distance matrix, and $p<m$ is a positive integer. The problem is to find the set P of p facilities that maximises the objective value

$$
\begin{equation*}
f(P)=\sum_{i \in I} \min _{j \in P} d_{i j} . \tag{1}
\end{equation*}
$$

That is, we are maximising the sum of distances from each client to its nearest facility.
We assume that $p>1$. Because the case $n \leq p<m$ is also trivial, we further assume $p<n$. Hence, $p \in\{2, \ldots, \min (n, m)-1\}$.

Given a candidate solution P, we say the facilities in P are open and the remaining facilities in $J \backslash P$ are closed. We use $\Delta_{\text {close }}(P, j)$, or simply $\Delta_{\text {close }}(j)$ when no ambiguity arises, to denote the resulting increase in the objective value if the facility j becomes closed. That is, $\Delta_{\text {close }}(P, j)=f(P \backslash\{j\})-$ $f(P)$. Similarly, $\Delta_{\text {open }}(P, j)$ or $\Delta_{\text {open }}(j)$ is defined as $f(P)-f(P \cup\{j\})$. Note that these definitions have been made so that the values are nonnegative.

```
Algorithm 1. Main
Inputs: A distance matrix \(D=\left[d_{i j}\right]_{n \times m}\)
                An Integer \(p \in\{2, \ldots, \min (n, m)-1\}\)
Output: A set of \(p\) facilities
Parameters: \(\gamma \in(0,1)\) and \(\tau>0\)
    Begin
    Initialise \(P\) randomly with \(p\) facilities //and initialise related data structures
    best \(P=P ; \quad\) worst \(f=\) best \(f=f=f(P) ; \quad\) radius \(=1 ; \quad \alpha=g(1)\)
    while termination_condition \(=\) false do
        IG1 ()
        IG2()
        // update radius and \(\alpha\) :
        if best \(f=\) worst \(f\) then
            \(g a p=0\)
        else
            gap \(=(\) best \(f-f) /(\) best \(f-\) worst \(f)\)
        end if
        radius \(=\min \{p-1\), radius \(+\lfloor(p-2) \times g a p\rfloor+1\}\)
        \(\alpha=g(\) radius \()\)
    end while
    return best \(P\)
    End
```


3. Proposed algorithm

The new algorithm we propose in this paper (Algorithm 1) is a variant of the IG algorithm hybridised by a diversification mechanism similar to that used in VNS. It receives as input an instance (D, p) of the problem. It also has two parameters γ and τ whose roles are explained shortly. The algorithm returns as output the best solution to the corresponding OpM instance it finds.

3.1. Reconstruction size and algorithm parameters

As a trajectory (single point) algorithm (Blum and Roli, 2003), Algorithm 1 starts with an initial solution P and keeps changing it (hopefully improving it) during the search using an IG mechanism. Key to this is the variable radius, also known as the reconstruction size, which is the number of facilities to close during the deconstruction phase and to open during the construction phase. Another key variable in this operation is α, which holds the probability value by which each candidate is shortlisted when we choose the best facility for closure/opening. That is, if $\alpha=1$, then we consider all potential facility changes, while if $\alpha=0$, then we would not allow any facility to change.

We observed empirically that using a value for α that declines with the radius, as opposed to a constant α, speeds up the algorithm. Thus, in the proposed algorithm, we always determine α according to the following formula:

$$
\begin{equation*}
\alpha=g(\text { radius })=\gamma 2^{-\tau(\text { radius }-1)}+(1-\gamma) \operatorname{rand}() . \tag{2}
\end{equation*}
$$

[^1]

Fig. 1. Iluustration of the function $2^{-\tau(\text { radius }-1)}$ for $\tau \in\{0,2,4,6,8\}$ and radius $\in\{1,2, \ldots, 10\}$. It is constant (1) for $\tau=0$ and declines exponentially otherwise.

Here, γ and τ are parameters of the algorithm, and $\operatorname{rand}()$ returns a nonnegative random value less than 1 . In particular, the parameter τ controls how fast the function $2^{-\tau(\text { radius }-1)}$ declines as the radius grows, while the parameter γ controls the balance between the value returned by this function and the randomisation introduced by $\operatorname{rand}()$. Figure 1 depicts the function $2^{-\tau(\text { radius }-1)}$ for different values of τ.

3.2. Algorithm description

Algorithm 1 starts by initialising a random solution P (consisting of p facilities) in line 2 . Then in line 3, it initialises the other variables: best P, for storing the best solution found so far, is initialised to P; best f and worst f, for storing the best and worst objective values seen so far, are both initialised to $f=f(P)$; variable radius is initialised to 1 ; and then α is set accordingly as described above.

The rest of Algorithm 1 consists of its main loop (lines 4-15), after whose termination the best solution found is returned (line 16). The loop termination condition could be a fixed number of iterations, a fixed number of consecutive iterations with no improvement, a time limit, or any combination of these, among other options.

Each iteration of the loop consists of two IG operations, IG1 and IG2 (lines 5-6), which we describe later. They may update the variables P, f, best P, best f, worst f, radius and α. Also, there is control code (lines $8-14$) to further update the variables radius and α as follows. The temporary variable gap, calculated in lines $8-12$, is used to indicate the quality of the current solution. It varies from 0 (when $f=$ best f) to 1 (when $f=$ worst f) and is defined as 0 in the exceptional case when $f=$ worst $f=$ best f. The variable radius is then increased by the value $\lfloor(p-2) \times g a p\rfloor+1$ in line 13 unless its new value would exceed $p-1$ in which case it becomes $p-1$. The increment
(C) 2023 The Authors.

```
Algorithm 2. IG1
Inputs: Uses \(P, f\), best \(f\), worst \(f\), radius and \(\alpha\), as global variables
Outputs: Updates \(P, f\), best \(P\), best \(f\), worst \(f\), radius and \(\alpha\) as global variables
1 Begin
    improved \(=\) true
    while improved do
        improved \(=\) false
        delta_ \(f=0\)
        for \(d=0\) to radius do
            delta_f \(=\) delta_f + Close_facility \((P, \alpha)\)
        end for
        for \(d=0\) to radius do
            delta_f \(=\) delta_f- Open_facility \((P, \alpha)\)
        end for
        \(f=f+\) delta_ \(f\)
        if delta_f \(>0\) then
            improved \(=\) true
            radius \(=1 ; \alpha=g(1)\)
            if \(f>\) best \(f\) then
                best \(P=P ;\) best \(f=f\)
            end if
        end if
        worst \(f=\min \{\) worst \(f, f\}\)
        end while
    End
```

value $\lfloor(p-2) \times g a p\rfloor+1$ is at least $1($ when $g a p=0)$ and at most $p-1$ (when gap $=1)$. This diversification mechanism generalises that used in the standard VNS, where the radius is incremented by 1 , by dynamically determining the increment based on the quality of the current solution. Finally, the variable α is updated based on the new value of radius in line 14.

The IG operations IG1 and IG2 perform local searches: IG1 searches by first closing and then opening facilities, while IG2 searches by first opening and then closing facilities. These operations generalise, respectively, the local search operations RLS1 and RLS2, proposed by Herrán et al. (2020) and used by Gökalp (2020). They allow the reconstruction size (the variable radius) to be greater than 1 in a given search. IG1 and IG2 also contain randomisation on which facilities are considered for change, controlled by the probability value α. The IG algorithm of Gökalp (2020) also uses a reconstruction size (normally) greater than 1, but this is fixed during runtime, whereas in our proposed algorithm, it varies between 1 and $p-1$ depending on the solution quality. Another difference is that the facility selection in the deconstruction phase in Gökalp (2020) is random not greedy, whereas the same (semi) greedy mechanism is used in both the deconstruction and the construction phases of the proposed algorithm.

Algorithm 2 presents the IG operation IG1. The algorithm for IG2 is the same except that lines 7 and 10 are swapped (swapping whether we open or close facilities first). Therefore, we only describe IG1 in detail. It consists of a while-loop (lines 3-21), which runs until no improved solution is found. At each iteration, it closes a number (radius) of facilities (the deconstruction phase in lines 6-8) and opens the same number of facilities (the construction phase in lines 9-11). This is achieved

[^2]```
Algorithm 3. Close_facility
Inputs: \(\quad P\) and \(\alpha\)
Outputs: Updates \(P\) and returns absolute change in the objective value
1 Begin
 \(d f=-1\)
 for \(j \in P\) do
 if \(\operatorname{random}()<\alpha\) then
 if \(\Delta_{\text {close }}(j)>d f\) then
 \(j^{*}=j\)
 \(d f=\Delta_{\text {close }}(j)\)
 end if
 end if
 end for
 if \(d f=-1\) then
 \(j^{*}=\) a random facility in \(P\)
 \(d f=\Delta_{\text {close }}\left(j^{*}\right)\)
 end if
 \(P=P \backslash\left\{j^{*}\right\} / /\) and update related data
 return \(d f\)
 End
```

by invoking the Close_facility and Open_facility functions. These functions, which will shortly be described in more detail, close and open a single facility respectively, and return the absolute change in the objective value. After this, the objective value $f$ is updated accordingly in line 12. If it has increased (as captured by the if-condition in line 13), then the flag improved is set to true (line 14) to allow for another iteration of the while-loop (lines 3-21). The variables radius and $\alpha$ are also set to 1 and $g(1)$, respectively (line 15 ), to increase the intensification. Further, if the obtained solution is even better than best $P$, then best $P$ and best $f$ are updated (line 16-18). In the case where $f$ becomes less than worst $f$, worst $f$ is set to $f$ (line 20).

The Close_facility (Algorithm 3) and Open_facility (Algorithm 4) operations are now described. The algorithm Close_facility receives as input a pair of $P$ and $\alpha$, closes a facility in $P$ and returns the absolute amount of increase in the objective value. When $\alpha=1$, the for-loop (lines 3-10) iterates through all the elements in $P$ and finds a facility $j^{*}$ whose closure would yield the maximum increase in the objective value. The amount of the increase $\Delta_{\text {close }}\left(j^{*}\right)$ is stored in the variable $d f$, which will be returned in line 16 . Note that the for-loop performs the selection process only, and the actual closure of $j^{*}$ is performed in line 15 . Notice that if $\alpha=1$, then the condition of the if-statement in line 4 would always be true, which means all facilities would be allowed to 'compete' for the selection, and we would truly find the maximum increase in objective value. However, when $\alpha<1$, then the selection process is not completely greedy because the if-statement in line 4 may filter out some facilities. In the (rare) case when all the facilities are filtered out (with probability $\alpha^{|P|}$ ), a facility will be selected uniformly at random (lines 11-14). The algorithm Open_facility (Algorithm 4) has a line-to-line correspondence with the algorithm Close_facility (Algorithm 3). It opens a facility among those outside $P$ (and passed through the filter of line 4) that minimises the amount of decrease in the objective value.
(C) 2023 The Authors.

```
Algorithm 4. Open_facility
Inputs: \(\quad J, P\) and \(\alpha\)
Outputs: Updates \(P\) and returns absolute change in the objective value
1 Begin
 \(d f=\infty\)
 for \(j \in J \backslash P\) do
 if random ()\(<\alpha\) then
 if \(\Delta_{\text {open }}(j)<d f\) then
 \(j^{*}=j\)
 \(d f=\Delta_{\text {open }}(j)\)
 end if
 end if
 end for
 if \(d f=\infty\) then
 \(j^{*}=\) a random facility in \(J \backslash P\)
 \(d f=\Delta_{\text {open }}\left(j^{*}\right)\)
 end if
 \(P=P \cup\left\{j^{*}\right\} / /\) and update related data
 return \(d f\)
 End
```

The randomness used in the Close_facility and Open_facility functions is a generalised variant of that used in the construction phase of GRASP proposed in Colmenar et al. (2016a). More specifically, Colmenar et al. (2016a) examined two different construction approaches, referred to as C1 and $C 2$, which differ in the way the restricted candidate list (RCL) is generated and used. By $C 1$, they meant the standard construction strategy used in the classic GRASP approach, where RCL is populated with the highest quality candidates from which one is selected randomly. In $C 2$, the order of the greediness and randomness changes. There, RCL is populated randomly with a portion of the candidates and its best element is then selected (greedily). Colmenar et al. (2016a) showed that $C 2$ would yield better results.

We also examined both approaches and observed the superiority of $C 2$ in our early research. However, in contrast to Colmenar et al. (2016a) who use this mechanism for opening facilities only, we use it for facility closure as well. Furthermore, we use a variant of $C 2$, in which the two steps of randomly populating RCL and finding its best element are performed simultaneously in a single loop (lines 3-10 of Algorithms 3 and 4).

## 4. Auxiliary data structures and facility opening and closure complexity

The proposed algorithm is built upon two unit operations of closing and opening a single facility, which are in turn based on two basic functions $\Delta_{\text {close }}($.$) and \Delta_{\text {open }}($.$) . Therefore, the efficiency$ of computing these functions is crucial to the overall running time of the algorithm. For this reason, we use auxiliary data structures to reduce their computational complexity as described in this section.

[^3]
### 4.1. Auxiliary data structures

We use similar (but not identical) notations to those used in the literature of the $p$-center problem (Mladenović et al., 2003; Pullan, 2008; Mousavi, 2023). For each client $i, i=1, \ldots, n$, we keep the list $N_{i}$ of all facilities sorted ascendingly by their distance from $i$, with ties broken arbitrarily. We use $N_{i}[k], k=1, \ldots, m$, to refer to the $k$ th facility in this list. We keep another list denoted as $N_{i}^{-1}$ to record the location of a facility $j, j=1, \ldots, m$, in the list $N_{i}$. That is, $N_{i}^{-1}[j]=k$ if and only if $N_{i}[k]=j$. These two data structures are static, which means their data are fixed for a given problem instance. The other data structures described next are dynamic and their data change with $P$ throughout a run of the algorithm. For a given $P$, we keep indicator variables $x_{j}, j=1, \ldots, m$, to indicate the membership of $j$ in $P$, that is,

$$
x_{j}=\left\{\begin{array}{rr}
1 & j \in P  \tag{3}\\
0 & \text { otherwise } .
\end{array}\right.
$$

We also record for each client $i$ a nearest facility $F_{i}$ (to which $i$ is assigned). If there is more than one nearest facility to $i$, we choose the one that appears first in the sorted list $N_{i}$. That is, $F_{i}=j$ if and only if $x_{j}=1$ and $\forall j_{1}: N_{i}^{-1}\left[j_{1}\right]<N_{i}^{-1}[j] \Rightarrow x_{j_{1}}=0$. Finally, for each open facility $j$, we keep the set $C_{j}$ of its assigned clients. That is, $C_{j}=\left\{i: F_{i}=j\right\}$. To the best of our knowledge, the data structures $N_{i}^{-1}$ and $C_{j}$ are novel in the literature of $\mathrm{O} p \mathrm{M}$ and $p \mathrm{M}$ problems.

Proposition 1. $\Delta_{\text {close }}(j)=\sum_{i \in C_{j}}\left(d_{i F_{i}^{(2)}}-d_{i j}\right)$, where $F_{i}^{(2)}$ is the second-nearest facility to $i$.
The proof follows by noting the facts that the closure of a facility $j$ would not affect clients outside $C_{j}$ and that it would replace $F_{i}$ with $F_{i}^{(2)}$ for each client i in $C_{j}$.

Proposition 2. $\Delta_{\text {open }}(j)=\sum_{i \in I: N_{i}^{-1}[j]<N_{i}^{-1}\left[F_{i}\right]}\left(d_{i F_{i}}-d_{i j}\right)$.
The proof follows by noting that opening a facility $j$ will affect a client $i$ only if $j$ replaces its currently assigned facility $F_{i}$, which is the case if and only if $j$ appears prior to $F_{i}$ in $N_{i}$.

### 4.2. Complexity analysis

Let $p_{t}=|P|$. The following propositions provide the time complexity of computing $\Delta_{\text {close }}($.$) and$ $\Delta_{\text {open }}($.$) using the auxiliary data structures N_{i}, N_{i}^{-1}, x_{j}, F_{i}$ and $C_{j}, i=1, \ldots, n, j=1, \ldots, m$.

Proposition 3. $\Delta_{\text {close }}(j)$ is computable in $O\left(\mathrm{~nm} / p_{t}{ }^{2}\right)$ average time.
Proof. We use Proposition 1 to compute $\Delta_{\text {close }}(j)$. The average number of clients in $C_{j}$ is $n / p_{t}$. To find $F_{i}^{(2)}$ for each client $i \in C_{j}$, we start from the location $N_{i}^{-1}[j]$ of facility $j$ in $N_{i}$ and proceed forward until we reach the location of another open facility. This takes $O\left(m / p_{t}\right)$ average time because $p_{t}$ out of the $m$ facilities in the list are open. Once $F_{i}^{(2)}$ is found, calculating $d_{i F_{i}^{(2)}}-d_{i j}$ takes $O(1)$ time.

Proposition 4. $\Delta_{\text {open }}(j)$ is computable in $O(n)$.
Proof. We use Proposition 2 to compute $\Delta_{\text {open }}(j)$. We go through each client $i \in I$ in $O(n)$ time, check the condition $N_{i}^{-1}[j]<N_{i}^{-1}\left[F_{i}\right]$ in $O(1)$ and, if the condition is met, calculate $d_{i F_{i}}-d_{i j}$ in $O(1)$.

```
Algorithm 5. Populate_static_data
Inputs: Uses \(I, J\) and \(D\) as global variables
Outputs: Populates static auxiliary data structures as global variables
1 Begin
 \(/ / N_{i}, i=1, \ldots, n\)
 for each client \(i \in I\) do
 \(N_{i}=\) list of all facilities \(j \in J\) sorted ascendingly by \(d_{i j}\)
 end for
 \(/ / N_{i}^{-1}, i=1, \ldots, n\)
 for each client \(i \in I\) do
 for \(k=1\) to \(m\) do
 \(N_{i}^{-1}\left[N_{i}[k]\right]=k\)
 end for
 end for
 End
```

```
Algorithm 6. Initialise_dynamic_data
Inputs: \(\quad P\)
 Uses \(I, J\) and static auxiliary data structures as global variables
Outputs: Updates dynamic auxiliary data structures as global variables
1 Begin
 \(/ / x_{j}, j=1, \ldots, m\)
 for each facility \(j \in J\) do
 \(x_{j}=0\)
 end for
 for each facility \(j \in P\) do
 \(x_{j}=1\)
 end for
 \(/ / F_{i}\) and \(C_{j}, i=1, \ldots, n, j=1, \ldots, m\)
 for each facility \(j \in J\) do
 \(C_{j}=\{ \}\)
 end for
 for each client \(i \in I\) do
 //find \(F_{i}\)
 \(k=0\)
 while \(x_{N_{i}[k]}=0\) do
 \(k=k+1\)
 end while
 \(F_{i}=N_{i}[k]\)
 \(C_{F_{i}}=C_{F_{i}} \cup\{i\}\)
 end for
 End
```

```
Algorithm 7. Update_dynamic_data_after_closure
Inputs: Facility \(j\)
 Uses auxiliary data structures as global variables
Outputs: Updates dynamic auxiliary data structures as global variables
Begin
 \(/ / x_{j}\)
 \(x_{j}=0\)
 for each client \(i \in C_{j}\) do
 \(/ /\) set new \(F_{i}\) to the current \(F_{i}^{(2)}\)
 \(k=1+N_{i}^{-1}\left[F_{i}\right]\)
 while \(x_{N_{i}[k]}=0\) do
 \(k=k+1\)
 end while
 \(F_{i}=N_{i}[k]\)
 //add \(i\) to the new list
 \(C_{F_{i}}=C_{F_{i}} \cup\{i\}\)
 end for
 End
```

```
Algorithm 8. Update_dynamic_data_after_opening
Inputs: Facility \(j\)
 Uses \(I\) and auxiliary data structures as global variables
Outputs: Updates dynamic auxiliary data structures as global variables
 Begin
 \(/ / x_{j}\)
 \(x_{j}=1\)
 \(C_{j}=\{ \}\)
 for each client \(i \in I\) do
 if \(N_{i}^{-1}[j]<N_{i}^{-1}\left[F_{i}\right]\) then
 //remove \(i\) from the old list
 \(C_{F_{i}}=C_{F_{i}} \backslash\{i\}\)
 \(F_{i}=j\)
 //add \(i\) to the new list
 \(C_{j}=C_{j} \cup\{i\}\)
 end if
 end for
 End
```

its termination condition, which could in turn be dependent on the solution quality (e.g., a fixed number of consecutive iterations without improvement).

## 5. Experimental results

To evaluate the performance of the proposed algorithm, it was implemented and compared with the current state-of-the-art metaheuristic techniques for the problem identified in Section 1.1. For simplicity, in the rest of this section, by TS and IG we mean the algorithms in Chang et al. (2021) and Gökalp (2020), respectively. We call our proposed algorithm IGV, standing for IG with variable reconstruction size.

We originally implemented IGV in Java. We obtained the original source code of TS and IG from the respective authors, which were written in Python and $\mathrm{C}++$, respectively. In order to achieve a meaningful comparison free of the different programming language features, we then also implemented our algorithm IGV in Python and C++. This is especially important for a fair comparison of TS and IGV because a typical Python program can be significantly slower than its equivalent Java (or C++) version. The source code of IGV in these three languages is available at https://github.com/srm2022/opm.

Section 5.1 explains the datasets used in the benchmarking. In Section 5.2, the IGV parameters $\gamma$ and $\tau$ are adjusted. The comparison of IGV with TS and IG is then presented in Sections 5.3 and 5.4, respectively. The parameter tuning experiments in Section 5.2 were performed using a laptop with Intel Core i5-6200 @ 2.3GHz CPU and 8 GB of RAM. The experiments in Sections 5.3 and 5.4 used the same desktop machine with an Intel Core i5-2400 CPU @ 3.10 GHz and 8 GB of RAM.

[^4]Table 1
Impact of parameter values on the running time of IGV

| $\tau \backslash \gamma$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 104 | 157 | 171 | 172 | 179 | 131 | 123 | 70 | 79 |
| 2 | 112 | 78 | 90 | 77 | 71 | 61 | 42 | 39 | 123 |
| 3 | 103 | 66 | 89 | 65 | 46 | 39 | 56 | 44 | 160 |
| 4 | 106 | 96 | 64 | 53 | 53 | 44 | 45 | 51 | 167 |
| 5 | 97 | 76 | 72 | 79 | 54 | 56 | 43 | 66 | 156 |
| 6 | 105 | 76 | 77 | 66 | 58 | 36 | 37 | 94 | 192 |
| 7 | 86 | 77 | 83 | 66 | 50 | 42 | 38 | 50 | 168 |
| 8 | 114 | 88 | 69 | 62 | 57 | 42 | 41 | 61 | 201 |
| 9 | 116 | 92 | 89 | 56 | 78 | 45 | 59 | 63 | 237 |

### 5.1. Benchmark datasets

Two datasets were used. The first dataset is available in Colmenar et al. (2016b). It consists of 144 OpM instances used in the recent literature (Gökalp, 2020; Herrán et al., 2020; Mladenović et al., 2020). Each instance has the same number $n$ of clients and facilities, which varies from 200 to 450 . For each value of $n$, there are six instances, two per for each value of $p=\lfloor n / 8\rfloor,\lfloor n / 4\rfloor$ and $\lfloor n / 2\rfloor$. The benchmark consists of two lists of 72 instances, labelled with ' A ' and ' B ', with a one to one correspondence. Each instance in the latter was obtained by transposing the distance matrix of its corresponding instance in the former. The former list was obtained by modifying 24 instances of the pM problem (Reese, 2006; Belotti et al., 2007; Mladenović et al., 2007) available in the OR-Library (Beasley, 1990a, 1990b). In the rest of the paper, we will refer to this dataset as the small dataset.

The number of clients $n$ in the small dataset is at most 450. To compare the algorithms on larger instances, we produced a second dataset using the pmed benchmarks from the OR-Library (Beasley, 1990a, 1990b). These instances were originally created for the pM problem, but they can readily be used for the $\mathrm{O} p \mathrm{M}$ problem by assuming $I=J$. We used instances pmed 21 to pmed40, which all have $n \geq 500$ clients, and we also changed the original values of $p$ to $n / 4$ and $n / 3$ to make a more challenging benchmark of 40 instances. Each data file contains a weighted graph (in addition to the values of $n$ and $p$ ), which needs to be converted to a complete graph. We used the Floyd-Warshall algorithm for this purpose. We will refer to this dataset as the large dataset in the rest of the paper.

### 5.2. Tuning of $I G V$ parameters

To adjust the parameters $\gamma$ and $\tau$, we randomly selected 14 instances (approximately $10 \%$ ) of the small dataset. We evaluated every pair $\left(\gamma_{i}, \tau_{j}\right)$ such that $\gamma_{i} \in\{0.1,0.2, \ldots, 0.9\}$ and $\tau_{j} \in$ $\{1,2, \ldots, 9\}$, by running IGV 10 times on each of the 14 instances and observing the total running time (for the 140 runs) needed to achieve the best-known objective values in the literature (Gökalp, 2020; Chang et al., 2021). The running times, rounded to the nearest second, are reported in Table 1.

Table 1 suggests that the best pair is $(\gamma, \tau)=(0.6,6)$, where the total running time is 36 seconds. The parameters are fixed to these values in the following experiments.

### 5.3. Comparison with the prior state-of-the-art TS

We ran the source code of TS with its original settings on both the small and the large datasets. As in Chang et al. (2021), it was run 10 times per instance.

### 5.3.1. Comparison with TS on small instances

Let $f_{i} t_{i}$ and $t^{\prime}{ }_{i}$ be, respectively, the best objective value, the hit time (i.e., the time taken to find $f_{i}$ ) and the total time of the $i$ th run of $\operatorname{TS}(i=1, \ldots, 10)$ on a given instance. We adjusted the termination condition of IGV such that its $i$ th run on that instance was terminated upon achieving a solution with a better or the same objective value as $f_{i}$.

The results are presented in Table 2. The first three columns describe the problem instance: First, we have the instance filename, which contains within it the number of facilities $p$. For brevity, the actual filename is shortened here. For example, instead of 'pmed17.txt.table.p100.A.txt', 'pmed17p100.A' is used. Then the number of clients $n$ (which equals the number of facilities) is presented, and finally the best-known objective value from the literature (Gökalp, 2020; Chang et al., 2021) is included. The next group of columns concerns the performance of TS: The first three columns report the average, the standard deviation and the best of the objective values obtained by TS over its 10 runs per instance; the subsequent two columns report the average and the standard deviation of the hit time $t$ (in seconds); and the final two columns of that group report the average and the standard deviation of the total running time $t^{\prime}$ ' of the algorithm. The remaining group of columns reports the respective results for IGV excluding the average and the standard deviation of its total running time because it terminates upon hitting (or exceeding) the target objective values. The last row shows the averages.

The results of Table 2 allow us to conclude that IGV is significantly faster than TS in obtaining the same (or better) objective values. IGV has a smaller average hit time for 138 out of the 144 instances. The average hit time of IGV over all 144 instances is 6.89 seconds, compared to 32.72 seconds for TS. Using a one-tailed paired $t$-test, the null hypothesis that the average hit time of IGV (over 10 runs for each instance) is not less than that of TS is rejected with an extremely low $p$-value $<6.7 \times 10^{-28}$.

The average hit times of the algorithms are visualised in Fig. 2a, where the instances are numbered as ordered in Table 2. Their side-by-side box plots are shown in Fig. 2b, which indicates lower average hit time percentiles for IGV.

### 5.3.2. Comparison with TS on large instances

Table 3 shows the results of the comparison on the large instances. As above, TS was run 10 times per instance using its original settings. However, this time IGV was run for the same amount of running time as spent by TS to observe whether or not it could find better objective values within that same time. The definitions of the columns in Table 3 are the same as those in Table 2 except that the third column reports $p$ instead of Best. The Best values are not known for this dataset because, to the best of our knowledge, this is its first use for OpM. Please note that the average and standard deviation of the total running time, $t^{\prime}$, of IGV are not included as they are by design equivalent to those of TS. The last two columns report the average and the standard deviation of the times when it achieves (or exceeds) the best objective values obtained by TS.

[^5]Table 2
Comparison of TS and IGV (in Python) on small instances

| Instance |  | Best | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{s \text { std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {arg }}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{s t d}$ |
| pmed17-p100.A | 200 | 4054 | 4054 | 0 | 4054 | 12.14 | 7.16 | 61.7 | 0.98 | 4054.00 | 0.00 | 4054 | 0.69 | 0.17 |
| pmed17-p25.A | 200 | 7317 | 7317 | 0 | 7317 | 1.835 | 0.63 | 39.7 | 3.52 | 7317.00 | 0.00 | 7317 | 1.75 | 1.23 |
| pmed17-p50.A | 200 | 5411 | 5409 | 3.77 | 5411 | 44.36 | 17.3 | 60.7 | 0.93 | 5409.10 | 3.51 | 5411 | 6.19 | 5.50 |
| pmed 18-p100.A | 200 | 4220 | 4219.4 | 0.92 | 4220 | 38.13 | 17.9 | 61.2 | 1.4 | 4219.70 | 0.64 | 4220 | 2.18 | 1.15 |
| pmed 18-p25.A | 200 | 7432 | 7432 | 0 | 7432 | 1.507 | 0.53 | 39.1 | 5.34 | 7432.00 | 0.00 | 7432 | 0.96 | 0.63 |
| pmed18-p50.A | 200 | 5746 | 5746 | 0 | 5746 | 5.673 | 3.25 | 60.1 | 4.41 | 5746.00 | 0.00 | 5746 | 2.42 | 2.02 |
| pmed 19-p100.A | 200 | 4033 | 4033 | 0 | 4033 | 38 | 14.2 | 60.9 | 0.9 | 4033.00 | 0.00 | 4033 | 2.48 | 1.83 |
| pmed 19-p25.A | 200 | 7020 | 7020 | 0 | 7020 | 1.524 | 0.36 | 37.7 | 5.49 | 7020.00 | 0.00 | 7020 | 0.49 | 0.10 |
| pmed 19-p $50 . \mathrm{A}$ | 200 | 5387 | 5386.9 | 0.3 | 5387 | 27.98 | 21.5 | 60.7 | 0.63 | 5387.00 | 0.00 | 5387 | 10.35 | 9.36 |
| pmed20-p100.A | 200 | 4063 | 4062.7 | 0.46 | 4063 | 34.31 | 14.8 | 61.5 | 1.35 | 4062.80 | 0.40 | 4063 | 1.36 | 0.43 |
| pmed20-p25.A | 200 | 7648 | 7648 | 0 | 7648 | 1.522 | 0.75 | 39 | 6.72 | 7648.00 | 0.00 | 7648 | 0.52 | 0.12 |
| pmed20-p50.A | 200 | 5872 | 5872 | 0 | 5872 | 10.77 | 4.97 | 61.8 | 1.09 | 5872.00 | 0.00 | 5872 | 1.30 | 0.55 |
| pmed21-p125.A | 250 | 4155 | 4151.1 | 2.84 | 4153 | 27.28 | 12 | 61.1 | 0.98 | 4151.50 | 3.11 | 4155 | 4.38 | 3.91 |
| pmed21-p31.A | 250 | 7304 | 7304 | 0 | 7304 | 3.617 | 2.15 | 60.5 | 2.99 | 7304.00 | 0.00 | 7304 | 3.73 | 3.16 |
| pmed21-p62.A | 250 | 5784 | 5774.1 | 9.13 | 5784 | 48.8 | 16.5 | 61 | 0.88 | 5775.80 | 8.57 | 5784 | 8.16 | 7.03 |
| pmed22-p125.A | 250 | 4358 | 4342.2 | 7.24 | 4351 | 50.04 | 12.1 | 61.6 | 1.24 | 4342.90 | 7.01 | 4351 | 4.02 | 2.68 |
| pmed22-p31.A | 250 | 7900 | 7900 | 0 | 7900 | 4.14 | 1.65 | 60.9 | 2.9 | 7900.00 | 0.00 | 7900 | 1.76 | 1.08 |
| pmed22-p62.A | 250 | 5995 | 5995 | 0 | 5995 | 25.96 | 12.3 | 60.7 | 0.66 | 5995.00 | 0.00 | 5995 | 4.30 | 2.28 |
| pmed23-p125.A | 250 | 4114 | 4096.9 | 10.8 | 4114 | 54.88 | 6.14 | 61.6 | 1.54 | 4097.80 | 10.61 | 4114 | 11.40 | 14.35 |
| pmed23-p31.A | 250 | 7841 | 7841 | 0 | 7841 | 2.09 | 0.8 | 61.8 | 1.47 | 7841.00 | 0.00 | 7841 | 1.77 | 1.17 |
| pmed23-p62.A | 250 | 5785 | 5784.1 | 2.7 | 5785 | 23.01 | 14.3 | 61.6 | 0.96 | 5784.10 | 2.70 | 5785 | 3.62 | 2.44 |
| pmed24-p125.A | 250 | 4091 | 4088.2 | 4.75 | 4091 | 42.92 | 15.1 | 62.3 | 1.73 | 4089.00 | 4.20 | 4091 | 7.60 | 3.72 |
| pmed24-p31.A | 250 | 7425 | 7425 | 0 | 7425 | 2.587 | 1.25 | 62.1 | 1.1 | 7425.00 | 0.00 | 7425 | 2.14 | 1.39 |
| pmed24-p62.A | 250 | 5528 | 5525.1 | 5.72 | 5528 | 33.16 | 19.4 | 61.6 | 1 | 5526.20 | 4.49 | 5528 | 4.59 | 2.35 |
| pmed25-p125.A | 250 | 4155 | 4149.3 | 10.9 | 4155 | 39.17 | 18.9 | 61.9 | 1.63 | 4150.00 | 9.56 | 4155 | 13.88 | 15.65 |
| pmed25-p31.A | 250 | 7552 | 7552 | 0 | 7552 | 2.119 | 0.39 | 56.3 | 6.64 | 7552.00 | 0.00 | 7552 | 1.08 | 0.44 |
| pmed25-p62.A | 250 | 5767 | 5767 | 0 | 5767 | 28.78 | 16.8 | 61.3 | 1.1 | 5767.00 | 0.00 | 5767 | 3.45 | 1.39 |
| pmed26-p150.A | 300 | 4341 | 4319.9 | 5.72 | 4325 | 46.36 | 14.7 | 61.8 | 1.39 | 4321.90 | 6.64 | 4329 | 2.86 | 1.13 |
| pmed26-p37.A | 300 | 8112 | 8112 | 0 | 8112 | 2.367 | 0.28 | 62.6 | 1.92 | 8112.00 | 0.00 | 8112 | 1.29 | 0.26 |
| pmed $26-\mathrm{p} 75 . \mathrm{A}$ | 300 | 5789 | 5787 | 4 | 5789 | 47.85 | 12.4 | 61.6 | 1.42 | 5787.10 | 3.81 | 5789 | 11.34 | 9.19 |
| pmed27-p150.A | 300 | 4062 | 4036.3 | 13.7 | 4054 | 50.68 | 7.41 | 61.5 | 1.13 | 4039.10 | 11.50 | 4054 | 4.69 | 2.90 |

Table 2
Continued

| Instance |  | Best | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}^{\prime}$ | $t_{\text {std }}^{\prime}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {arg }}$ | $t_{\text {std }}$ |
| pmed27-p37.A | 300 | 7556 | 7556 | 0 | 7556 | 4.52 | 1.17 | 62.2 | 1.74 | 7556.00 | 0.00 | 7556 | 3.33 | 1.51 |
| pmed27-p75.A | 300 | 5668 | 5664.8 | 3.92 | 5668 | 39.04 | 18.4 | 61 | 0.88 | 5664.90 | 3.81 | 5668 | 20.34 | 19.89 |
| pmed28-p150.A | 300 | 4099 | 4064.4 | 18.1 | 4093 | 41.49 | 17.6 | 61.9 | 1.83 | 4066.70 | 17.73 | 4093 | 3.36 | 1.74 |
| pmed28-p37.A | 300 | 7366 | 7366 | 0 | 7366 | 3.449 | 0.47 | 62.2 | 1.57 | 7366.00 | 0.00 | 7366 | 2.45 | 1.22 |
| pmed28-p75.A | 300 | 5681 | 5678.7 | 4.61 | 5681 | 34.1 | 20.2 | 61.7 | 0.81 | 5678.80 | 4.42 | 5681 | 19.75 | 13.64 |
| pmed29-p150.A | 300 | 4141 | 4116.8 | 9.74 | 4135 | 41.78 | 9.63 | 62.2 | 2.03 | 4118.60 | 10.57 | 4140 | 2.33 | 0.62 |
| pmed29-p37.A | 300 | 7404 | 7404 | 0 | 7404 | 14.99 | 12 | 61.8 | 1.35 | 7404.00 | 0.00 | 7404 | 10.87 | 6.76 |
| pmed29-p75.A | 300 | 5880 | 5880 | 0 | 5880 | 33.04 | 18.2 | 62.3 | 1.48 | 5880.00 | 0.00 | 5880 | 5.23 | 2.19 |
| pmed30-p150.A | 300 | 4385 | 4378.7 | 5.37 | 4385 | 43.84 | 18 | 61 | 0.76 | 4380.00 | 5.55 | 4385 | 8.90 | 12.95 |
| pmed30-p37.A | 300 | 7704 | 7704 |  | 7704 | 4.661 | 2.29 | 63 | 1.88 | 7704.00 | 0.00 | 7704 | 1.96 | 0.83 |
| pmed30-p75.A | 300 | 6189 | 6183.3 | 4.78 | 6189 | 37.05 | 16.6 | 62.2 | 1.34 | 6184.50 | 4.52 | 6189 | 6.46 | 3.58 |
| pmed31-p175.A | 350 | 4136 | 4106.1 | 18.8 | 4129 | 55.62 | 6.3 | 62.6 | 1.62 | 4110.20 | 15.35 | 4130 | 5.13 | 3.34 |
| pmed31-p43.A | 350 | 7424 | 7424 | 0 | 7424 | 6.179 | 1.65 | 62.6 | 1.84 | 7424.00 | 0.00 | 7424 | 3.13 | 1.32 |
| pmed31-p87.A | 350 | 5905 | 5903.8 | 2.4 | 5905 | 33.17 | 13.6 | 63.4 | 2.25 | 5904.10 | 1.92 | 5905 | 16.49 | 12.01 |
| pmed32-p175.A | 350 | 4242 | 4198.5 | 19.6 | 4232 | 50.53 | 12.3 | 61.6 | 1.25 | 4200.70 | 20.72 | 4233 | 4.52 | 3.43 |
| pmed32-p43.A | 350 | 7794 | 7788.2 | 11.6 | 7794 | 16.98 | 16.6 | 62.5 | 1.36 | 7788.20 | 11.60 | 7794 | 17.28 | 19.75 |
| pmed32-p87.A | 350 | 5925 | 5905.2 | 7.56 | 5925 | 43.84 | 14.5 | 62.4 | 2.05 | 5906.70 | 7.20 | 5925 | 8.49 | 4.65 |
| pmed33-p175.A | 350 | 4105 | 4080.3 | 9.88 | 4100 | 57.33 | 10 | 63 | 2.44 | 4081.30 | 9.24 | 4101 | 4.49 | 2.16 |
| pmed33-p43.A | 350 | 7598 | 7598 | 0 | 7598 | 5.38 | 1.16 | 63.5 | 1.11 | 7598.00 | 0.00 | 7598 | 4.60 | 2.51 |
| pmed33-p87.A | 350 | 5793 | 5772.2 | 12.9 | 5790 | 50.38 | 15.2 | 61.3 | 0.72 | 5774.30 | 12.70 | 5790 | 7.01 | 4.38 |
| pmed34-p175.A | 350 | 4287 | 4237.7 | 22.7 | 4278 | 49.89 | 12.2 | 63.2 | 1.76 | 4239.90 | 23.12 | 4279 | 6.00 | 3.24 |
| pmed34-p43.A | 350 | 7725 | 7725 | 0 | 7725 | 7.013 | 3.64 | 63.1 | 2.16 | 7725.00 | 0.00 | 7725 | 6.22 | 3.53 |
| pmed34-p87.A | 350 | 5849 | 5835.8 | 6.26 | 5844 | 41.93 | 13.2 | 61.8 | 1.57 | 5838.40 | 5.31 | 5849 | 6.38 | 4.26 |
| pmed35-p100.A | 400 | 5845 | 5812.2 | 24.2 | 5845 | 53 | 10.4 | 61.8 | 1.22 | 5815.40 | 24.83 | 5845 | 7.66 | 4.63 |
| pmed35-p200.A | 400 | 4007 | 3956.7 | 12.1 | 3973 | 62.04 | 3.79 | 63.4 | 1.72 | 3958.50 | 10.79 | 3974 | 6.30 | 2.41 |
| pmed35-p50.A | 400 | 7155 | 7155 | 0 | 7155 | 22.08 | 8.79 | 62.6 | 1.12 | 7155.00 | 0.00 | 7155 | 11.83 | 7.02 |
| pmed36-p100.A | 400 | 6461 | 6456.6 | 4.96 | 6461 | 45.66 | 13.4 | 62.3 | 1.49 | 6457.70 | 5.14 | 6461 | 6.31 | 3.53 |
| pmed36-p200.A | 400 | 4319 | 4261.7 | 21.7 | 4296 | 58.66 | 9.87 | 65 | 1.92 | 4265.00 | 19.99 | 4296 | 5.44 | 3.94 |
| pmed36-p50.A | 400 | 8179 | 8178.4 | 1.8 | 8179 | 23.84 | 15.3 | 62.9 | 1.62 | 8178.40 | 1.80 | 8179 | 9.31 | 4.27 |
| pmed37-p100.A | 400 | 6203 | 6173.1 | 20.2 | 6196 | 52.91 | 11.1 | 62.1 | 1.14 | 6176.50 | 19.54 | 6203 | 17.16 | 18.94 |
| pmed37-p200.A | 400 | 4593 | 4531.4 | 13.9 | 4563 | 63.75 | 4.57 | 65.4 | 2.42 | 4534.90 | 12.14 | 4566 | 3.72 | 1.36 |

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1-32
Table 2
Continued

| Instance |  | Best | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}{ }^{\prime}$ | $t_{\text {std }}{ }^{\prime}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed37-p50.A | 400 | 7830 | 7827.6 | 4.8 | 7830 | 34.5 | 13.5 | 62.5 | 1.76 | 7827.70 | 4.61 | 7830 | 8.62 | 3.91 |
| pmed38-p112.A | 450 | 5915 | 5898 | 4.63 | 5905 | 48.36 | 6.98 | 63.5 | 1.61 | 5898.60 | 5.30 | 5906 | 10.33 | 7.02 |
| pmed38-p225.A | 450 | 4428 | 4364.4 | 17.3 | 4388 | 106 | 7.18 | 110 | 5.38 | 4368.60 | 15.97 | 4388 | 5.85 | 1.94 |
| pmed38-p56.A | 450 | 7432 | 7432 | 0 | 7432 | 20.72 | 5.27 | 63.7 | 2.71 | 7432.00 | 0.00 | 7432 | 10.40 | 4.98 |
| pmed39-p112.A | 450 | 5935 | 5921.7 | 7.56 | 5935 | 54.43 | 7.78 | 62.9 | 1.55 | 5924.40 | 7.62 | 5935 | 12.41 | 6.14 |
| pmed39-p225.A | 450 | 4369 | 4317.2 | 17.6 | 4349 | 105.7 | 8.79 | 109 | 6.97 | 4322.60 | 15.00 | 4351 | 5.31 | 3.16 |
| pmed39-p56.A | 450 | 7712 | 7712 | 0 | 7712 | 22.63 | 6.22 | 62.8 | 2.66 | 7712.00 | 0.00 | 7712 | 6.36 | 3.09 |
| pmed40-p112.A | 450 | 6272 | 6249.8 | 12 | 6270 | 56.77 | 8.9 | 64.2 | 2.11 | 6251.40 | 11.89 | 6271 | 9.66 | 4.05 |
| pmed40-p225.A | 450 | 4572 | 4522.9 | 10.7 | 4536 | 102.3 | 8.3 | 105 | 5.39 | 4524.50 | 10.23 | 4539 | 7.71 | 4.06 |
| pmed40-p56.A | 450 | 8211 | 8207 | 8 | 8211 | 29.36 | 12.5 | 63 | 1.67 | 8207.60 | 6.93 | 8211 | 8.76 | 6.62 |
| pmed17-p100.B | 200 | 3992 | 3992 | 0 | 3992 | 8.594 | 5.23 | 61.4 | 1.32 | 3992.00 | 0.00 | 3992 | 0.80 | 0.48 |
| pmed17-p25.B | 200 | 6905 | 6905 | 0 | 6905 | 1.731 | 0.79 | 41 | 3.54 | 6905.00 | 0.00 | 6905 | 1.49 | 1.61 |
| pmed17-p50.B | 200 | 5563 | 5563 | 0 | 5563 | 15.02 | 9.14 | 61.6 | 0.79 | 5563.00 | 0.00 | 5563 | 2.29 | 2.67 |
| pmed18-p100.B | 200 | 4122 | 4119.5 | 2.94 | 4122 | 35.09 | 17.6 | 60.9 | 0.89 | 4120.00 | 2.45 | 4122 | 4.15 | 3.84 |
| pmed18-p25.B | 200 | 7662 | 7662 | 0 | 7662 | 1.651 | 0.57 | 40.9 | 3.64 | 7662.00 | 0.00 | 7662 | 0.61 | 0.24 |
| pmed18-p50.B | 200 | 5852 | 5852 | 0 | 5852 | 10.19 | 10 | 61.6 | 0.91 | 5852.00 | 0.00 | 5852 | 1.35 | 0.71 |
| pmed19-p100.B | 200 | 4016 | 4014.2 | 2.75 | 4016 | 27.36 | 16.7 | 61.2 | 0.98 | 4014.80 | 2.40 | 4016 | 2.73 | 1.80 |
| pmed19-p25.B | 200 | 6816 | 6816 | 0 | 6816 | 1.522 | 0.55 | 41.7 | 4.02 | 6816.00 | 0.00 | 6816 | 0.71 | 0.53 |
| pmed19-p50.B | 200 | 5423 | 5423 | 0 | 5423 | 9.806 | 8 | 61.6 | 1.04 | 5423.00 | 0.00 | 5423 | 1.74 | 0.71 |
| pmed20-p100.B | 200 | 4067 | 4066.7 | 0.46 | 4067 | 38.05 | 21.1 | 61.2 | 0.86 | 4066.80 | 0.40 | 4067 | 33.60 | 22.14 |
| pmed20-p25.B | 200 | 7349 | 7349 | 0 | 7349 | 1.36 | 0.42 | 36.6 | 5.77 | 7349.00 | 0.00 | 7349 | 0.80 | 0.38 |
| pmed20-p50.B | 200 | 5665 | 5665 | 0 | 5665 | 7.925 | 5.95 | 62.3 | 1.03 | 5665.00 | 0.00 | 5665 | 1.71 | 1.26 |
| pmed21-p125.B | 250 | 4033 | 4024.6 | 2.65 | 4029 | 42.25 | 18.1 | 61.3 | 1.49 | 4026.10 | 3.56 | 4032 | 5.68 | 4.50 |
| pmed21-p31.B | 250 | 7331 | 7331 | 0 | 7331 | 2.491 | 0.94 | 61.7 | 2.91 | 7331.00 | 0.00 | 7331 | 1.69 | 0.92 |
| pmed21-p62.B | 250 | 5870 | 5870 | 0 | 5870 | 11.91 | 6.12 | 62.3 | 1.34 | 5870.00 | 0.00 | 5870 | 2.93 | 1.26 |
| pmed22-p125.B | 250 | 4338 | 4322.2 | 10.8 | 4338 | 48.02 | 9.54 | 60.9 | 1.08 | 4323.60 | 9.96 | 4338 | 12.35 | 22.30 |
| pmed22-p31.B | 250 | 7695 | 7695 | 0 | 7695 | 2.654 | 1.18 | 55.9 | 8.61 | 7695.00 | 0.00 | 7695 | 1.02 | 0.36 |
| pmed22-p62.B | 250 | 6259 | 6259 | 0 | 6259 | 5.085 | 2.7 | 62.3 | 0.76 | 6259.00 | 0.00 | 6259 | 2.09 | 0.75 |
| pmed23-p125.B | 250 | 4095 | 4085 | 9.15 | 4095 | 51.44 | 6.94 | 61.5 | 1.34 | 4085.30 | 8.93 | 4095 | 14.12 | 18.98 |
| pmed23-p31.B | 250 | 7137 | 7137 | 0 | 7137 | 8.734 | 7.02 | 61.7 | 1.14 | 7137.00 | 0.00 | 7137 | 10.45 | 14.49 |
| pmed23-p62.B | 250 | 5724 | 5724 | 0 | 5724 | 29.53 | 15 | 60.8 | 0.47 | 5724.00 | 0.00 | 5724 | 4.30 | 2.88 |
| pmed24-p125.B | 250 | 4072 | 4061.6 | 8.45 | 4072 | 52.15 | 9.59 | 61 | 0.62 | 4062.60 | 7.55 | 4072 | 9.78 | 12.54 |
| pmed24-p31.B | 250 | 7190 | 7190 | 0 | 7190 | 2.434 | 0.44 | 54.6 | 8.48 | 7190.00 | 0.00 | 7190 | 1.83 | 0.71 |

Table 2
Continued

| Instance |  | Best | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {arg }}$ | $t_{s t d}$ | $t_{\text {avg }}^{\prime}$ | $t_{\text {std }}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed24-p62.B | 250 | 5752 | 5742.6 | 11.6 | 5752 | 18.96 | 9.3 | 62.1 | 1.45 | 5743.50 | 10.60 | 5752 | 7.05 | 4.04 |
| pmed25-p125.B | 250 | 4233 | 4225.3 | 6.33 | 4233 | 38.9 | 12.1 | 62 | 2.16 | 4226.30 | 6.23 | 4233 | 4.76 | 5.82 |
| pmed25-p31.B | 250 | 7552 | 7552 | 0 | 7552 | 9.034 | 7.06 | 56.6 | 7.79 | 7552.00 | 0.00 | 7552 | 6.31 | 4.62 |
| pmed25-p62.B | 250 | 5692 | 5691 | 3 | 5692 | 25.97 | 15.6 | 61.3 | 0.54 | 5691.30 | 2.10 | 5692 | 9.46 | 10.03 |
| pmed26-p150.B | 300 | 4173 | 4144 | 13.3 | 4163 | 43.94 | 12.9 | 62.2 | 2.03 | 4148.20 | 9.10 | 4163 | 5.65 | 7.34 |
| pmed26-p37.B | 300 | 7643 | 7643 | 0 | 7643 | 3.998 | 1.86 | 63.4 | 1.7 | 7643.00 | 0.00 | 7643 | 4.81 | 4.21 |
| pmed26-p75.B | 300 | 5923 | 5923 | 0 | 5923 | 13.84 | 5.44 | 62.4 | 2.4 | 5923.00 | 0.00 | 5923 | 6.51 | 2.99 |
| pmed27-p150.B | 300 | 4144 | 4127 | 17 | 4144 | 44.83 | 18.5 | 62 | 1.37 | 4128.80 | 16.50 | 4144 | 7.71 | 6.13 |
| pmed27-p37.B | 300 | 7448 | 7448 | 0 | 7448 | 9.136 | 5.05 | 61.8 | 1.05 | 7448.00 | 0.00 | 7448 | 2.47 | 1.02 |
| pmed27-p75.B | 300 | 5844 | 5838 | 9.17 | 5844 | 37.92 | 18 | 61.8 | 1.12 | 5839.00 | 7.95 | 5844 | 13.62 | 15.70 |
| pmed28-p150.B | 300 | 4069 | 4036.2 | 13.3 | 4055 | 57.24 | 8 | 62.2 | 2.5 | 4038.00 | 12.90 | 4056 | 4.62 | 3.01 |
| pmed28-p37.B | 300 | 7388 | 7388 | 0 | 7388 | 2.917 | 1.11 | 62.6 | 1.63 | 7388.00 | 0.00 | 7388 | 2.12 | 0.99 |
| pmed28-p75.B | 300 | 5642 | 5625.9 | 11.3 | 5642 | 40.33 | 13.1 | 61.1 | 1.29 | 5628.60 | 10.87 | 5642 | 7.58 | 6.76 |
| pmed29-p150.B | 300 | 4157 | 4136.2 | 8.58 | 4157 | 51.25 | 9.93 | 61.4 | 1.39 | 4138.30 | 7.81 | 4157 | 5.60 | 5.25 |
| pmed29-p37.B | 300 | 7529 | 7529 | 0 | 7529 | 8.182 | 4.36 | 61.4 | 1.18 | 7529.00 | 0.00 | 7529 | 2.32 | 0.92 |
| pmed29-p75.B | 300 | 5709 | 5708.5 | 1.5 | 5709 | 37.75 | 14.4 | 61.7 | 1.58 | 5708.50 | 1.50 | 5709 | 13.28 | 11.06 |
| pmed30-p150.B | 300 | 4313 | 4245.1 | 11.4 | 4268 | 52.64 | 11.4 | 61.7 | 1.7 | 4248.00 | 11.07 | 4269 | 2.80 | 1.41 |
| pmed30-p37.B | 300 | 8048 | 8048 | 0 | 8048 | 3.562 | 1 | 62.7 | 2.9 | 8048.00 | 0.00 | 8048 | 1.61 | 0.52 |
| pmed30-p75.B | 300 | 6041 | 6039.5 | 4.5 | 6041 | 41.75 | 14 | 61.5 | 0.96 | 6039.70 | 3.90 | 6041 | 7.44 | 3.44 |
| pmed31-p175.B | 350 | 4138 | 4106.2 | 9.26 | 4119 | 43.33 | 13.2 | 62.1 | 0.7 | 4108.80 | 8.63 | 4125 | 3.96 | 1.94 |
| pmed31-p43.B | 350 | 7320 | 7320 | 0 | 7320 | 29.21 | 9.62 | 62.1 | 2.13 | 7320.00 | 0.00 | 7320 | 12.19 | 7.89 |
| pmed31-p87.B | 350 | 5621 | 5605.9 | 11.9 | 5621 | 39.13 | 15.1 | 61.8 | 1.02 | 5606.70 | 11.09 | 5621 | 16.54 | 18.56 |
| pmed32-p175.B | 350 | 4247 | 4198.3 | 14 | 4226 | 49.65 | 13.2 | 62.7 | 2.98 | 4200.90 | 13.40 | 4226 | 7.12 | 10.58 |
| pmed32-p43.B | 350 | 7899 | 7899 | 0 | 7899 | 6.212 | 2.01 | 62.4 | 1.13 | 7899.00 | 0.00 | 7899 | 9.95 | 7.69 |
| pmed32-p87.B | 350 | 5852 | 5800.7 | 19.5 | 5821 | 52.34 | 11.5 | 61.7 | 0.93 | 5808.60 | 18.75 | 5839 | 6.14 | 3.55 |
| pmed33-p175.B | 350 | 4156 | 4108.1 | 10.8 | 4127 | 48.86 | 14.1 | 61.8 | 1.95 | 4110.50 | 11.52 | 4128 | 3.36 | 1.51 |

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies
S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1-32
Table 2
Continued

| Instance |  | Best | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {arg }}$ | $t_{s t d}$ | $t_{\text {avg }}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{s t d}$ |
| pmed33-p43.B | 350 | 7611 | 7611 | 0 | 7611 | 7.42 | 4.63 | 62.4 | 2.04 | 7611.00 | 0.00 | 7611 | 6.54 | 5.49 |
| pmed33-p87.B | 350 | 5840 | 5815.8 | 10.7 | 5827 | 41.46 | 15.7 | 61.7 | 0.88 | 5819.00 | 11.76 | 5830 | 9.99 | 7.32 |
| pmed34-p175.B | 350 | 4270 | 4245.2 | 14.9 | 4269 | 41.54 | 16.2 | 63.8 | 3.06 | 4248.80 | 13.13 | 4270 | 4.95 | 5.73 |
| pmed34-p43.B | 350 | 7514 | 7514 | 0 | 7514 | 5.875 | 3.46 | 63.5 | 1.29 | 7514.00 | 0.00 | 7514 | 3.53 | 2.65 |
| pmed34-p87.B | 350 | 5857 | 5849.4 | 5.66 | 5857 | 50.1 | 14.6 | 60.8 | 0.74 | 5850.70 | 5.98 | 5857 | 11.57 | 7.54 |
| pmed35-p100.B | 400 | 5639 | 5621.1 | 14.7 | 5639 | 40.99 | 16.4 | 63.4 | 2.38 | 5624.60 | 13.21 | 5639 | 21.17 | 23.41 |
| pmed35-p200.B | 400 | 4109 | 4048.6 | 18.1 | 4090 | 57.31 | 8.63 | 63.6 | 2.04 | 4053.70 | 16.35 | 4090 | 4.32 | 3.03 |
| pmed35-p50.B | 400 | 7570 | 7570 | 0 | 7570 | 10.97 | 4.68 | 62.7 | 1.91 | 7570.00 | 0.00 | 7570 | 6.11 | 7.19 |
| pmed36-p100.B | 400 | 6219 | 6186.4 | 24.5 | 6212 | 46.5 | 15.6 | 62 | 1.51 | 6190.30 | 21.26 | 6212 | 18.27 | 21.38 |
| pmed36-p200.B | 400 | 4321 | 4252.9 | 19.6 | 4284 | 53.56 | 8.63 | 62.5 | 1.67 | 4256.20 | 18.47 | 4285 | 3.94 | 1.19 |
| pmed36-p50.B | 400 | 8144 | 8144 | 0 | 8144 | 22.38 | 13.7 | 62 | 1.21 | 8144.00 | 0.00 | 8144 | 7.07 | 4.25 |
| pmed37-p100.B | 400 | 6212 | 6186.8 | 15 | 6210 | 49.9 | 11.9 | 62.1 | 0.91 | 6191.00 | 15.15 | 6211 | 16.62 | 11.44 |
| pmed37-p200.B | 400 | 4609 | 4530.3 | 25.2 | 4576 | 55.36 | 5.6 | 62.7 | 2.11 | 4539.90 | 25.78 | 4576 | 4.40 | 2.93 |
| pmed37-p50.B | 400 | 8379 | 8379 | 0 | 8379 | 20.67 | 5.52 | 62.2 | 1.4 | 8379.00 | 0.00 | 8379 | 6.96 | 3.57 |
| pmed38-p112.B | 450 | 5949 | 5918.8 | 27.9 | 5949 | 52.3 | 9.07 | 62.6 | 1.24 | 5921.70 | 26.85 | 5949 | 20.04 | 15.99 |
| pmed38-p225.B | 450 | 4446 | 4397.3 | 10.6 | 4413 | 95.89 | 7.59 | 101 | 5.9 | 4399.60 | 11.49 | 4419 | 6.62 | 4.56 |
| pmed38-p56.B | 450 | 7535 | 7535 | 0 | 7535 | 28.77 | 9.7 | 63.7 | 2.09 | 7535.00 | 0.00 | 7535 | 33.92 | 20.91 |
| pmed39-p 12.B | 450 | 6198 | 6184.2 | 17 | 6198 | 51.11 | 11 | 62.6 | 1.99 | 6189.10 | 9.57 | 6198 | 13.15 | 12.32 |
| pmed39-p225.B | 450 | 4268 | 4218.5 | 11.1 | 4246 | 96.37 | 9.39 | 103 | 6.55 | 4220.30 | 11.71 | 4246 | 4.18 | 0.77 |
| pmed39-p56.B | 450 | 7625 | 7618.7 | 11 | 7625 | 38.11 | 12.1 | 62.3 | 1.46 | 7620.90 | 9.92 | 7625 | 12.59 | 7.57 |
| pmed40-p1 12.B | 450 | 6200 | 6165.4 | 17.1 | 6199 | 53.58 | 11 | 62.9 | 1.48 | 6166.60 | 17.45 | 6199 | 11.00 | 4.30 |
| pmed40-p225.B | 450 | 4532 | 4488.7 | 13.7 | 4509 | 99.74 | 10.7 | 104 | 7.51 | 4490.80 | 12.96 | 4510 | 5.00 | 1.56 |
| pmed40-p56.B | 450 | 8022 | 8021.2 | 0.6 | 8022 | 33.1 | 14.9 | 62.1 | 1.09 | 8021.40 | 0.66 | 8022 | 11.99 | 7.96 |
| Average | 312.50 | 5884.2 | 5871.23 | 6.21 | 5879.74 | 32.72 | 9.59 | 62.46 | 2.07 | 5872.37 | 5.86 | 5880.31 | 6.89 | 5.32 |

Table 3
Comparison of TS and IGV (in Python) on large instances

| Instance |  |  | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| filename | $n$ | $p$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{s t d}$ | $t^{\prime}{ }_{\text {avg }}$ | $t_{\text {std }}{ }^{\text {d }}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed21 | 500 | 125 | 7032.4 | 105.15 | 7188 | 62.04 | 5.59 | 64.95 | 2.4 | 7463.30 | 95.17 | 7686 | 12.18 | 7.44 |
| pmed21 | 500 | 166 | 5659.8 | 77.9 | 5760 | 68.33 | 4.15 | 70.49 | 4.56 | 6112.50 | 87.33 | 6246 | 11.22 | 5.66 |
| pmed 22 | 500 | 125 | 7343.2 | 110.34 | 7568 | 57.84 | 6.15 | 63.18 | 1.75 | 7795.80 | 246.76 | 8250 | 18.39 | 12.26 |
| pmed22 | 500 | 166 | 5931.7 | 50.19 | 6017 | 67.56 | 6.04 | 72.38 | 3.37 | 6395.70 | 80.12 | 6543 | 7.63 | 3.30 |
| pmed23 | 500 | 125 | 7004.4 | 95.93 | 7205 | 55.83 | 4.79 | 62.92 | 1.76 | 7454.50 | 119.21 | 7660 | 11.13 | 5.77 |
| pmed23 | 500 | 166 | 5804.4 | 54.21 | 5894 | 65.36 | 5.73 | 70.42 | 2.95 | 6116.30 | 88.87 | 6235 | 13.25 | 9.19 |
| pmed24 | 500 | 125 | 7019.7 | 72 | 7105 | 60.42 | 5.84 | 64.22 | 2.11 | 7436.00 | 77.37 | 7537 | 9.03 | 2.58 |
| pmed24 | 500 | 166 | 5673.9 | 51.1 | 5762 | 66.31 | 8.22 | 70.54 | 5.45 | 6182.70 | 63.90 | 6244 | 7.24 | 5.32 |
| pmed25 | 500 | 125 | 7072.3 | 113.16 | 7236 | 58.4 | 7.77 | 64.45 | 2.24 | 7756.40 | 140.82 | 7933 | 13.23 | 9.62 |
| pmed25 | 500 | 166 | 5637.6 | 56.21 | 5772 | 66.95 | 6.17 | 70.72 | 3.08 | 6219.80 | 74.07 | 6318 | 9.50 | 5.02 |
| pmed26 | 600 | 150 | 7109 | 113.61 | 7298 | 102.45 | 6.91 | 106.7 | 5.28 | 7574.80 | 135.54 | 7772 | 20.49 | 12.38 |
| pmed26 | 600 | 200 | 5661 | 68.6 | 5768 | 185.6 | 14.37 | 193.6 | 8.18 | 6109.20 | 119.19 | 6280 | 16.37 | 7.44 |
| pmed27 | 600 | 150 | 6984.7 | 124.57 | 7216 | 103.71 | 7.4 | 108.1 | 4.29 | 7504.70 | 103.08 | 7664 | 24.34 | 25.61 |
| pmed27 | 600 | 200 | 5657.5 | 64.39 | 5762 | 191.19 | 9.49 | 197 | 4.58 | 6105.60 | 54.85 | 6175 | 19.23 | 10.67 |
| pmed28 | 600 | 150 | 6796.4 | 108 | 6951 | 104.63 | 4.59 | 106.3 | 3.22 | 7334.90 | 126.93 | 7536 | 16.99 | 7.79 |
| pmed28 | 600 | 200 | 5460.1 | 64.69 | 5619 | 179.83 | 13.58 | 190.5 | 7.24 | 5986.60 | 39.79 | 6039 | 15.88 | 8.97 |
| pmed29 | 600 | 150 | 6969.9 | 90.52 | 7194 | 97.35 | 8.41 | 100.5 | 6.43 | 7534.10 | 137.12 | 7776 | 15.30 | 8.28 |
| pmed29 | 600 | 200 | 5701.1 | 51.54 | 5751 | 186.73 | 12.84 | 195.5 | 7.4 | 6192.80 | 58.87 | 6257 | 17.57 | 13.05 |
| pmed30 | 600 | 150 | 7400.3 | 82.28 | 7553 | 103.26 | 7.18 | 106.3 | 6.13 | 7819.60 | 60.08 | 7932 | 17.41 | 18.11 |
| pmed30 | 600 | 200 | 6062.2 | 52.77 | 6185 | 194.63 | 13.34 | 200.9 | 8.82 | 6502.90 | 41.24 | 6587 | 19.10 | 15.44 |
| pmed31 | 700 | 175 | 6951.4 | 69.56 | 7056 | 257.83 | 14.55 | 262.4 | 9.76 | 7598.80 | 151.35 | 7826 | 26.76 | 18.69 |

Table 3
Continu

| Instance |  |  | TS |  |  |  |  |  |  | IGV (Python) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| filename | $n$ | $p$ | $f_{\text {arg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}$ | $t^{\prime}{ }_{\text {std }}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {arg }}$ | $t_{s \text { sd }}$ |
| pmed31 | 700 | 233 | 5642.7 | 42.16 | 5714 | 628.69 | 27.31 | 642.4 | 21.3 | 6260.60 | 69.52 | 6372 | 15.63 | 6.66 |
| pmed32 | 700 | 175 | 7276.4 | 58.37 | 7365 | 242.19 | 14.19 | 246.7 | 10.4 | 7912.00 | 71.99 | 8050 | 27.22 | 17.44 |
| pmed32 | 700 | 233 | 5900 | 52.39 | 6038 | 596.66 | 48.5 | 612.9 | 29.7 | 6495.90 | 42.80 | 6553 | 20.23 | 9.99 |
| pmed33 | 700 | 175 | 7217.4 | 89.05 | 7432 | 234.77 | 12.92 | 240.8 | 8.43 | 7755.50 | 83.04 | 7889 | 20.18 | 10.21 |
| pmed33 | 700 | 233 | 5786.6 | 51.12 | 5872 | 595.28 | 41.17 | 614.7 | 22.3 | 6434.40 | 63.09 | 6568 | 26.81 | 16.20 |
| pmed34 | 700 | 175 | 7100.5 | 88.78 | 7234 | 251.69 | 19.31 | 259.9 | 14.3 | 7677.50 | 174.07 | 7948 | 22.02 | 13.91 |
| pmed34 | 700 | 233 | 5766.5 | 59.29 | 5879 | 635.94 | 43.28 | 653.8 | 24.9 | 6294.10 | 52.64 | 6382 | 20.06 | 12.49 |
| pmed35 | 800 | 200 | 6923.6 | 65.48 | 7015 | 714.08 | 32.94 | 738 | 18.7 | 7557.70 | 75.98 | 7658 | 35.35 | 20.33 |
| pmed35 | 800 | 266 | 5614.1 | 68.45 | 5728 | 1031.1 | 78.26 | 1051 | 49.7 | 6192.30 | 49.20 | 6247 | 32.23 | 15.96 |
| pmed36 | 800 | 200 | 7542.3 | 120.99 | 7827 | 747.64 | 33.58 | 769.1 | 29.4 | 8186.90 | 47.04 | 8267 | 36.31 | 27.36 |
| pmed36 | 800 | 266 | 6141.8 | 85.37 | 6323 | 1011.2 | 65.91 | 1040 | 37.3 | 6664.10 | 69.47 | 6770 | 32.90 | 21.11 |
| pmed37 | 800 | 200 | 7645.2 | 74.42 | 7818 | 690.74 | 38.66 | 724.6 | 22.5 | 8294.40 | 63.56 | 8389 | 37.16 | 24.39 |
| pmed37 | 800 | 266 | 6193.9 | 45.85 | 6260 | 1011.5 | 53.01 | 1039 | 25.2 | 6819.20 | 37.58 | 6892 | 20.81 | 7.92 |
| pmed38 | 900 | 225 | 7210.7 | 104.62 | 7374 | 1175.4 | 54.86 | 1198 | 42.5 | 7833.60 | 59.26 | 7913 | 55.37 | 36.29 |
| pmed38 | 900 | 300 | 5820.3 | 63.8 | 5907 | 1669.4 | 47.67 | 1682 | 42.3 | 6437.20 | 33.67 | 6501 | 35.63 | 11.46 |
| pmed39 | 900 | 225 | 7236.1 | 81.57 | 7398 | 1168.6 | 52.8 | 1193 | 38.5 | 7887.20 | 63.09 | 8014 | 58.54 | 25.23 |
| pmed39 | 900 | 300 | 5845.2 | 22 | 5866 | 1647.6 | 46.84 | 1664 | 42.4 | 6453.20 | 80.20 | 6564 | 48.20 | 16.51 |
| pmed40 | 900 | 225 | 7831 | 85.51 | 7993 | 1184.5 | 51.09 | 1191 | 50.6 | 8451.70 | 54.83 | 8515 | 44.28 | 18.59 |
| pmed40 | 900 | 300 | 6331 | 40.35 | 6403 | 1607.9 | 64.53 | 1642 | 40.7 | 6880.90 | 46.12 | 6950 | 42.32 | 16.80 |
| Average | 670 | 195 | 6499 | 74.4 | 6632.7 | 479.5 | 25.0 | 491.1 | 16.8 | 7042.14 | 83.47 | 7173.45 | 23.84 | 13.54 |



Fig. 2. (a) The average hit times of TS and IGV (Python) for small instances. (b) Their side-by-side box plots without outliers.

Table 3 shows that, for all 40 of these larger instances, IGV achieves improved average (and best) objective values. Using a one-tailed paired $t$-test, the null hypothesis that IGV does not improve the average objective values ( $f_{\text {avg }}$ ) for these instances is rejected with an extremely low $p$-value $<3.5 \times$ $10^{-33}$.

### 5.4. Comparison with the prior state-of-the-art $I G$

We now compare the implementation of our algorithms in C++ with the author's source code of IG. The comparison proceeds as in Section 5.3.

### 5.4.1. Comparison with $I G$ on small instances

Table 4 presents the results for IG and IGV(C++) on the small problem instances, with the same columns as in Table 2.

Table 4 shows that, on average, IGV is significantly faster than IG in obtaining the same (or better) objective values. IGV has smaller average hit time for 141 out of 144 instances. Its average hit time over all 144 instances is 0.53 seconds, less than that of IG ( 26.29 seconds) by an order of magnitude. Using a one-tailed paired $t$-test, the null hypothesis that the average hit time of IGV (over 10 runs for each instance) is not less than that of IG is strongly rejected with a $p$-value $<6.1 \times 10^{-8}$.

The average hit times of the algorithms are visualised in Fig. 3a. Their box plots are shown in Fig. 3b, which indicates significantly lower percentiles for IGV.

### 5.4.2. Comparison with $I G$ on large instances

Table 5 shows the results for IG and IGV (C++) on the large instances, with the layout as in Table 3. Consistently with Section 5.3.2, IG was first run 10 times per instance using its original settings,

[^6]Table 4
Comparison of IG and IGV (in C++) on small instances

| Instance |  | Best | IG |  |  |  |  |  |  | $\mathrm{IGV}(\mathrm{C}++)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{s t d}$ |
| pmed17-p100.A | 200 | 4054 | 4054 | 0 | 4054 | 0.27 | 0.20 | 17.90 | 0.11 | 4054.00 | 0.00 | 4054 | 0.05 | 0.09 |
| pmed17-p25.A | 200 | 7317 | 7317 | 0 | 7317 | 0.15 | 0.12 | 3.16 | 0.02 | 7317.00 | 0.00 | 7317 | 0.04 | 0.04 |
| pmed17-p50.A | 200 | 5411 | 5411 | 0 | 5411 | 0.88 | 0.40 | 7.44 | 0.07 | 5411.00 | 0.00 | 5411 | 0.16 | 0.14 |
| pmed18-p100.A | 200 | 4220 | 4220 | 0 | 4220 | 0.46 | 0.26 | 17.88 | 0.30 | 4220.00 | 0.00 | 4220 | 0.14 | 0.10 |
| pmed18-p25.A | 200 | 7432 | 7432 | 0 | 7432 | 0.06 | 0.06 | 2.90 | 0.02 | 7432.00 | 0.00 | 7432 | 0.02 | 0.01 |
| pmed18-p50.A | 200 | 5746 | 5746 | 0 | 5746 | 0.16 | 0.11 | 7.37 | 0.07 | 5746.00 | 0.00 | 5746 | 0.05 | 0.04 |
| pmed19-p100.A | 200 | 4033 | 4033 | 0 | 4033 | 1.12 | 0.91 | 19.25 | 0.06 | 4033.00 | 0.00 | 4033 | 0.04 | 0.02 |
| pmed19-p25.A | 200 | 7020 | 7020 | 0 | 7020 | 0.01 | 0.01 | 2.99 | 0.03 | 7020.00 | 0.00 | 7020 | 0.01 | 0.01 |
| pmed19-p50.A | 200 | 5387 | 5386.1 | 0.3 | 5387 | 0.82 | 0.80 | 7.37 | 0.06 | 5386.60 | 0.49 | 5387 | 0.07 | 0.07 |
| pmed20-p100.A | 200 | 4063 | 4063 | 0 | 4063 | 0.89 | 0.34 | 17.96 | 0.17 | 4063.00 | 0.00 | 4063 | 0.05 | 0.03 |
| pmed20-p25.A | 200 | 7648 | 7648 | 0 | 7648 | 0.02 | 0.02 | 2.91 | 0.02 | 7648.00 | 0.00 | 7648 | 0.01 | 0.01 |
| pmed20-p50.A | 200 | 5872 | 5872 | 0 | 5872 | 0.46 | 0.29 | 7.00 | 0.05 | 5872.00 | 0.00 | 5872 | 0.06 | 0.05 |
| pmed21-p125.A | 250 | 4155 | 4154.8 | 0.6 | 4155 | 5.65 | 4.29 | 47.79 | 0.24 | 4155.00 | 0.00 | 4155 | 0.53 | 0.42 |
| pmed21-p31.A | 250 | 7304 | 7304 | 0 | 7304 | 0.55 | 0.31 | 6.66 | 0.04 | 7304.00 | 0.00 | 7304 | 0.05 | 0.03 |
| pmed21-p62.A | 250 | 5784 | 5783.5 | 0.67 | 5784 | 7.53 | 3.93 | 19.57 | 0.28 | 5783.70 | 0.46 | 5784 | 0.24 | 0.25 |
| pmed22-p125.A | 250 | 4358 | 4354.4 | 4.45 | 4358 | 10.62 | 10.84 | 39.98 | 0.54 | 4354.70 | 4.20 | 4358 | 0.51 | 0.62 |
| pmed22-p31.A | 250 | 7900 | 7900 | 0 | 7900 | 0.20 | 0.13 | 6.46 | 0.03 | 7900.00 | 0.00 | 7900 | 0.05 | 0.03 |
| pmed22-p62.A | 250 | 5995 | 5995 | 0 | 5995 | 1.02 | 1.03 | 17.10 | 0.07 | 5995.00 | 0.00 | 5995 | 0.09 | 0.06 |
| pmed23-p125.A | 250 | 4114 | 4114 | 0 | 4114 | 8.13 | 7.57 | 44.58 | 0.13 | 4114.00 | 0.00 | 4114 | 1.35 | 1.07 |
| pmed23-p31.A | 250 | 7841 | 7841 | 0 | 7841 | 0.04 | 0.05 | 6.84 | 0.02 | 7841.00 | 0.00 | 7841 | 0.04 | 0.04 |
| pmed23-p62.A | 250 | 5785 | 5785 | 0 | 5785 | 2.99 | 2.09 | 17.95 | 0.07 | 5785.00 | 0.00 | 5785 | 0.07 | 0.04 |
| pmed24-p125.A | 250 | 4091 | 4091 | 0 | 4091 | 9.32 | 6.24 | 49.98 | 0.09 | 4091.00 | 0.00 | 4091 | 0.06 | 0.03 |
| pmed24-p31.A | 250 | 7425 | 7425 | 0 | 7425 | 0.12 | 0.12 | 6.39 | 0.04 | 7425.00 | 0.00 | 7425 | 0.03 | 0.02 |
| pmed24-p62.A | 250 | 5528 | 5528 | 0 | 5528 | 1.15 | 1.35 | 16.83 | 0.08 | 5528.00 | 0.00 | 5528 | 0.12 | 0.06 |
| pmed25-p125.A | 250 | 4155 | 4155 | 0 | 4155 | 10.91 | 11.12 | 49.96 | 0.16 | 4155.00 | 0.00 | 4155 | 0.24 | 0.19 |
| pmed25-p31.A | 250 | 7552 | 7552 | 0 | 7552 | 0.06 | 0.05 | 6.73 | 0.03 | 7552.00 | 0.00 | 7552 | 0.02 | 0.01 |

Table 4
Continued

| Instance |  | Best | IG |  |  |  |  |  |  | IGV (C++) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed25-p62.A | 250 | 5767 | 5767 | 0 | 5767 | 2.75 | 1.96 | 19.22 | 0.11 | 5767.00 | 0.00 | 5767 | 0.07 | 0.05 |
| pmed26-p150.A | 300 | 4341 | 4340.3 | 0.9 | 4341 | 40.14 | 23.30 | 94.62 | 0.73 | 4340.30 | 0.90 | 4341 | 1.98 | 1.79 |
| pmed26-p37.A | 300 | 8112 | 8112 | 0 | 8112 | 0.02 | 0.03 | 13.72 | 0.05 | 8112.00 | 0.00 | 8112 | 0.02 | 0.01 |
| pmed26-p75.A | 300 | 5789 | 5789 | 0 | 5789 | 4.21 | 2.34 | 38.03 | 0.14 | 5789.00 | 0.00 | 5789 | 0.19 | 0.13 |
| pmed27-p150.A | 300 | 4062 | 4062 | 0 | 4062 | 14.61 | 3.83 | 97.76 | 0.19 | 4062.00 | 0.00 | 4062 | 0.28 | 0.21 |
| pmed27-p37.A | 300 | 7556 | 7556 | 0 | 7556 | 0.65 | 0.37 | 13.96 | 0.04 | 7556.00 | 0.00 | 7556 | 0.06 | 0.03 |
| pmed27-p75.A | 300 | 5668 | 5668 | 0 | 5668 | 14.48 | 11.62 | 38.11 | 0.12 | 5668.00 | 0.00 | 5668 | 0.58 | 0.43 |
| pmed28-p150.A | 300 | 4099 | 4099 | 0 | 4099 | 8.99 | 5.05 | 82.21 | 0.31 | 4099.00 | 0.00 | 4099 | 0.52 | 0.22 |
| pmed28-p37.A | 300 | 7366 | 7366 | 0 | 7366 | 0.29 | 0.15 | 13.75 | 0.10 | 7366.00 | 0.00 | 7366 | 0.04 | 0.04 |
| pmed28-p75.A | 300 | 5681 | 5681 | 0 | 5681 | 6.19 | 4.40 | 38.58 | 0.21 | 5681.00 | 0.00 | 5681 | 0.45 | 0.48 |
| pmed29-p150.A | 300 | 4141 | 4139.1 | 1.45 | 4141 | 44.73 | 27.52 | 98.44 | 0.42 | 4139.90 | 1.51 | 4141 | 0.17 | 0.08 |
| pmed29-p37.A | 300 | 7404 | 7404 | 0 | 7404 | 1.05 | 0.81 | 12.91 | 0.04 | 7404.00 | 0.00 | 7404 | 0.21 | 0.18 |
| pmed29-p75.A | 300 | 5880 | 5880 | 0 | 5880 | 1.04 | 0.87 | 37.55 | 0.10 | 5880.00 | 0.00 | 5880 | 0.10 | 0.06 |
| pmed30-p150.A | 300 | 4385 | 4385 | 0 | 4385 | 3.72 | 2.63 | 88.78 | 0.72 | 4385.00 | 0.00 | 4385 | 0.42 | 0.49 |
| pmed30-p37.A | 300 | 7704 | 7704 | 0 | 7704 | 0.21 | 0.10 | 12.95 | 0.09 | 7704.00 | 0.00 | 7704 | 0.06 | 0.03 |
| pmed30-p75.A | 300 | 6189 | 6186.5 | 2.5 | 6189 | 7.95 | 6.92 | 38.62 | 0.26 | 6187.00 | 2.45 | 6189 | 0.20 | 0.17 |
| pmed31-p175.A | 350 | 4136 | 4135 | 0.45 | 4136 | 83.71 | 51.98 | 186.97 | 0.96 | 4135.30 | 0.64 | 4136 | 1.67 | 1.37 |
| pmed31-p43.A | 350 | 7424 | 7424 | 0 | 7424 | 0.58 | 0.31 | 23.26 | 0.13 | 7424.00 | 0.00 | 7424 | 0.07 | 0.04 |
| pmed31-p87.A | 350 | 5905 | 5905 | 0 | 5905 | 1.69 | 1.07 | 68.25 | 0.26 | 5905.00 | 0.00 | 5905 | 0.19 | 0.11 |
| pmed32-p175.A | 350 | 4242 | 4241.2 | 0.98 | 4242 | 39.75 | 43.93 | 160.43 | 0.65 | 4241.30 | 0.90 | 4242 | 0.69 | 0.87 |
| pmed32-p43.A | 350 | 7794 | 7794 | 0 | 7794 | 3.44 | 3.68 | 23.08 | 0.06 | 7794.00 | 0.00 | 7794 | 0.44 | 0.29 |
| pmed32-p87.A | 350 | 5925 | 5925 | 0 | 5925 | 7.58 | 8.34 | 66.53 | 0.17 | 5925.00 | 0.00 | 5925 | 0.45 | 0.33 |
| pmed33-p175.A | 350 | 4105 | 4102.5 | 1.75 | 4105 | 33.59 | 21.36 | 164.30 | 2.04 | 4103.00 | 1.48 | 4105 | 1.54 | 1.82 |
| pmed33-p43.A | 350 | 7598 | 7598 | 0 | 7598 | 0.40 | 0.39 | 23.27 | 0.09 | 7598.00 | 0.00 | 7598 | 0.12 | 0.15 |
| pmed33-p87.A | 350 | 5793 | 5793 | 0 | 5793 | 5.75 | 4.72 | 66.14 | 0.24 | 5793.00 | 0.00 | 5793 | 0.31 | 0.14 |
| pmed34-p175.A | 350 | 4287 | 4287 | 0 | 4287 | 17.74 | 19.27 | 168.99 | 0.22 | 4287.00 | 0.00 | 4287 | 0.85 | 0.58 |
| pmed34-p43.A | 350 | 7725 | 7725 | 0 | 7725 | 2.00 | 0.69 | 23.14 | 0.08 | 7725.00 | 0.00 | 7725 | 0.10 | 0.06 |

Table 4
Continued

| Instance |  | Best | IG |  |  |  |  |  |  | $\mathrm{IGV}(\mathrm{C}++)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed34-p87.A | 350 | 5849 | 5846.5 | 2.5 | 5849 | 11.46 | 10.04 | 67.23 | 0.52 | 5847.30 | 2.24 | 5849 | 1.57 | 1.29 |
| pmed35-p100.A | 400 | 5845 | 5845 | 0 | 5845 | 24.75 | 12.17 | 122.41 | 0.33 | 5845.00 | 0.00 | 5845 | 0.34 | 0.20 |
| pmed35-p200.A | 400 | 4007 | 4005.5 | 1.5 | 4007 | 105.77 | 70.85 | 314.22 | 1.73 | 4005.80 | 1.54 | 4007 | 1.41 | 1.14 |
| pmed35-p50.A | 400 | 7155 | 7155 | 0 | 7155 | 1.06 | 0.40 | 40.17 | 0.19 | 7155.00 | 0.00 | 7155 | 0.16 | 0.10 |
| pmed36-p100.A | 400 | 6461 | 6461 | 0 | 6461 | 8.99 | 3.22 | 115.52 | 0.32 | 6461.00 | 0.00 | 6461 | 0.12 | 0.07 |
| pmed36-p200.A | 400 | 4319 | 4316.3 | 4.22 | 4319 | 124.90 | 68.36 | 292.75 | 1.80 | 4316.60 | 4.08 | 4319 | 6.28 | 7.36 |
| pmed36-p50.A | 400 | 8179 | 8179 | 0 | 8179 | 1.40 | 1.02 | 39.13 | 0.13 | 8179.00 | 0.00 | 8179 | 0.10 | 0.07 |
| pmed37-p100.A | 400 | 6203 | 6203 | 0 | 6203 | 42.76 | 34.37 | 114.78 | 0.29 | 6203.00 | 0.00 | 6203 | 0.92 | 0.58 |
| pmed37-p200.A | 400 | 4593 | 4591.4 | 2.33 | 4593 | 188.30 | 86.45 | 302.35 | 2.60 | 4591.40 | 2.33 | 4593 | 1.19 | 1.32 |
| pmed37-p50.A | 400 | 7830 | 7830 | 0 | 7830 | 3.78 | 2.31 | 38.64 | 0.20 | 7830.00 | 0.00 | 7830 | 0.23 | 0.11 |
| pmed38-p112.A | 450 | 5915 | 5914.2 | 1.33 | 5915 | 77.54 | 51.80 | 197.86 | 2.25 | 5914.20 | 1.33 | 5915 | 2.20 | 2.03 |
| pmed38-p225.A | 450 | 4428 | 4426.7 | 1.1 | 4428 | 228.99 | 170.09 | 513.18 | 2.82 | 4427.00 | 1.00 | 4428 | 0.90 | 0.72 |
| pmed38-p56.A | 450 | 7432 | 7432 | 0 | 7432 | 0.80 | 0.62 | 63.16 | 0.30 | 7432.00 | 0.00 | 7432 | 0.18 | 0.08 |
| pmed39-p112.A | 450 | 5935 | 5935 | 0 | 5935 | 14.59 | 8.56 | 194.75 | 0.53 | 5935.00 | 0.00 | 5935 | 0.29 | 0.19 |
| pmed39-p225.A | 450 | 4369 | 4368.6 | 0.49 | 4369 | 202.38 | 111.73 | 491.95 | 1.10 | 4368.70 | 0.46 | 4369 | 5.97 | 4.45 |
| pmed39-p56.A | 450 | 7712 | 7712 | 0 | 7712 | 1.56 | 1.12 | 65.71 | 0.31 | 7712.00 | 0.00 | 7712 | 0.13 | 0.08 |
| pmed40-p112.A | 450 | 6272 | 6271.9 | 0.3 | 6272 | 76.38 | 53.88 | 193.10 | 1.07 | 6271.90 | 0.30 | 6272 | 1.27 | 0.71 |
| pmed40-p225.A | 450 | 4572 | 4570.3 | 1.35 | 4572 | 176.95 | 108.69 | 480.60 | 1.91 | 4570.50 | 1.20 | 4572 | 1.33 | 1.01 |
| pmed40-p56.A | 450 | 8211 | 8211 | 0 | 8211 | 1.91 | 0.61 | 67.30 | 0.18 | 8211.00 | 0.00 | 8211 | 0.14 | 0.06 |
| pmed17-p100.B | 200 | 3992 | 3992 | 0 | 3992 | 0.24 | 0.27 | 20.43 | 0.07 | 3992.00 | 0.00 | 3992 | 0.02 | 0.03 |
| pmed17-p25.B | 200 | 6905 | 6905 | 0 | 6905 | 0.06 | 0.05 | 2.83 | 0.01 | 6905.00 | 0.00 | 6905 | 0.02 | 0.01 |
| pmed17-p50.B | 200 | 5563 | 5563 | 0 | 5563 | 0.57 | 0.37 | 7.98 | 0.04 | 5563.00 | 0.00 | 5563 | 0.04 | 0.04 |
| pmed18-p100.B | 200 | 4122 | 4121.7 | 0.9 | 4122 | 2.41 | 1.86 | 16.28 | 0.19 | 4121.70 | 0.90 | 4122 | 0.06 | 0.04 |
| pmed18-p25.B | 200 | 7662 | 7662 | 0 | 7662 | 0.10 | 0.07 | 2.83 | 0.02 | 7662.00 | 0.00 | 7662 | 0.01 | 0.01 |
| pmed18-p50.B | 200 | 5852 | 5852 | 0 | 5852 | 0.18 | 0.16 | 6.94 | 0.06 | 5852.00 | 0.00 | 5852 | 0.03 | 0.02 |
| pmed19-p100.B | 200 | 4016 | 4016 | 0 | 4016 | 0.33 | 0.30 | 17.39 | 0.05 | 4016.00 | 0.00 | 4016 | 0.12 | 0.12 |
| pmed19-p25.B | 200 | 6816 | 6816 | 0 | 6816 | 0.02 | 0.01 | 2.69 | 0.02 | 6816.00 | 0.00 | 6816 | 0.01 | 0.00 |

Table 4
Continued

| Instance |  | Best | IG |  |  |  |  |  |  | IGV (C++) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}$ | $t_{\text {std }}^{\prime}$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed19-p50.B | 200 | 5423 | 5423 | 0 | 5423 | 0.27 | 0.18 | 7.38 | 0.03 | 5423.00 | 0.00 | 5423 | 0.03 | 0.02 |
| pmed20-p100.B | 200 | 4067 | 4067 | 0 | 4067 | 2.30 | 2.15 | 17.88 | 0.06 | 4067.00 | 0.00 | 4067 | 0.48 | 0.43 |
| pmed20-p25.B | 200 | 7349 | 7349 | 0 | 7349 | 0.03 | 0.02 | 2.83 | 0.02 | 7349.00 | 0.00 | 7349 | 0.02 | 0.01 |
| pmed20-p50.B | 200 | 5665 | 5665 | 0 | 5665 | 0.12 | 0.11 | 7.33 | 0.06 | 5665.00 | 0.00 | 5665 | 0.04 | 0.03 |
| pmed21-p125.B | 250 | 4033 | 4032 | 3 | 4033 | 18.12 | 10.03 | 43.36 | 1.42 | 4032.30 | 2.10 | 4033 | 0.35 | 0.30 |
| pmed21-p31.B | 250 | 7331 | 7331 | 0 | 7331 | 0.12 | 0.09 | 6.63 | 0.03 | 7331.00 | 0.00 | 7331 | 0.03 | 0.03 |
| pmed21-p62.B | 250 | 5870 | 5870 | 0 | 5870 | 0.56 | 0.50 | 17.96 | 0.10 | 5870.00 | 0.00 | 5870 | 0.07 | 0.06 |
| pmed22-p125.B | 250 | 4338 | 4337.2 | 0.98 | 4338 | 17.78 | 12.61 | 43.68 | 0.18 | 4337.30 | 0.90 | 4338 | 0.48 | 0.64 |
| pmed22-p31.B | 250 | 7695 | 7695 | 0 | 7695 | 0.09 | 0.08 | 6.49 | 0.05 | 7695.00 | 0.00 | 7695 | 0.03 | 0.02 |
| pmed22-p62.B | 250 | 6259 | 6259 | 0 | 6259 | 0.26 | 0.20 | 18.66 | 0.08 | 6259.00 | 0.00 | 6259 | 0.03 | 0.03 |
| pmed23-p125.B | 250 | 4095 | 4095 | 0 | 4095 | 3.18 | 2.85 | 42.35 | 0.25 | 4095.00 | 0.00 | 4095 | 0.33 | 0.16 |
| pmed23-p31.B | 250 | 7137 | 7137 | 0 | 7137 | 0.35 | 0.48 | 6.11 | 0.06 | 7137.00 | 0.00 | 7137 | 0.22 | 0.16 |
| pmed23-p62.B | 250 | 5724 | 5724 | 0 | 5724 | 1.41 | 0.89 | 16.57 | 0.10 | 5724.00 | 0.00 | 5724 | 0.08 | 0.06 |
| pmed24-p125.B | 250 | 4072 | 4072 | 0 | 4072 | 5.15 | 4.19 | 47.13 | 0.13 | 4072.00 | 0.00 | 4072 | 0.16 | 0.09 |
| pmed24-p31.B | 250 | 7190 | 7190 | 0 | 7190 | 0.23 | 0.21 | 5.95 | 0.04 | 7190.00 | 0.00 | 7190 | 0.04 | 0.03 |
| pmed24-p62.B | 250 | 5752 | 5752 | 0 | 5752 | 6.79 | 4.51 | 17.35 | 0.18 | 5752.00 | 0.00 | 5752 | 0.20 | 0.15 |
| pmed25-p125.B | 250 | 4233 | 4230.2 | 2.86 | 4233 | 11.88 | 12.01 | 43.17 | 0.29 | 4230.70 | 2.45 | 4233 | 0.08 | 0.04 |
| pmed25-p31.B | 250 | 7552 | 7552 | 0 | 7552 | 0.66 | 0.55 | 6.85 | 0.04 | 7552.00 | 0.00 | 7552 | 0.20 | 0.14 |
| pmed25-p62.B | 250 | 5692 | 5692 | 0 | 5692 | 6.42 | 5.43 | 19.09 | 0.13 | 5692.00 | 0.00 | 5692 | 0.21 | 0.22 |
| pmed26-p150.B | 300 | 4173 | 4173 | 0 | 4173 | 19.21 | 15.63 | 99.55 | 0.22 | 4173.00 | 0.00 | 4173 | 0.25 | 0.16 |
| pmed26-p37.B | 300 | 7643 | 7643 | 0 | 7643 | 0.43 | 0.42 | 13.25 | 0.06 | 7643.00 | 0.00 | 7643 | 0.08 | 0.05 |
| pmed26-p75.B | 300 | 5923 | 5923 | 0 | 5923 | 2.96 | 2.67 | 38.50 | 0.29 | 5923.00 | 0.00 | 5923 | 0.06 | 0.03 |
| pmed27-p150.B | 300 | 4144 | 4144 | 0 | 4144 | 17.44 | 14.86 | 97.37 | 0.18 | 4144.00 | 0.00 | 4144 | 0.42 | 0.28 |
| pmed27-p37.B | 300 | 7448 | 7448 | 0 | 7448 | 0.34 | 0.20 | 13.26 | 0.05 | 7448.00 | 0.00 | 7448 | 0.05 | 0.03 |
| pmed27-p75.B | 300 | 5844 | 5844 | 0 | 5844 | 3.30 | 2.20 | 40.19 | 0.18 | 5844.00 | 0.00 | 5844 | 0.30 | 0.24 |
| pmed28-p150.B | 300 | 4069 | 4069 | 0 | 4069 | 39.67 | 20.23 | 92.64 | 0.19 | 4069.00 | 0.00 | 4069 | 0.30 | 0.21 |
| pmed28-p37.B | 300 | 7388 | 7388 | 0 | 7388 | 0.07 | 0.07 | 13.25 | 0.06 | 7388.00 | 0.00 | 7388 | 0.04 | 0.02 |

Table 4

| Instance |  | Best | IG |  |  |  |  |  |  | IGV (C++) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Filename | $n$ |  | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed28-p75.B | 300 | 5642 | 5640.1 | 3.81 | 5642 | 12.28 | 8.66 | 37.38 | 0.14 | 5640.10 | 3.81 | 5642 | 0.49 | 0.34 |
| pmed29-p150.B | 300 | 4157 | 4157 | 0 | 4157 | 5.73 | 2.38 | 103.64 | 1.94 | 4157.00 | 0.00 | 4157 | 0.22 | 0.15 |
| pmed29-p37.B | 300 | 7529 | 7529 | 0 | 7529 | 0.17 | 0.11 | 13.14 | 0.07 | 7529.00 | 0.00 | 7529 | 0.07 | 0.03 |
| pmed29-p75.B | 300 | 5709 | 5709 | 0 | 5709 | 10.37 | 8.41 | 36.98 | 0.18 | 5709.00 | 0.00 | 5709 | 0.26 | 0.18 |
| pmed30-p150.B | 300 | 4313 | 4313 | 0 | 4313 | 22.93 | 15.16 | 96.96 | 0.47 | 4313.00 | 0.00 | 4313 | 0.52 | 0.32 |
| pmed30-p37.B | 300 | 8048 | 8048 | 0 | 8048 | 0.38 | 0.39 | 13.31 | 0.17 | 8048.00 | 0.00 | 8048 | 0.03 | 0.02 |
| pmed30-p75.B | 300 | 6041 | 6041 | 0 | 6041 | 4.52 | 3.12 | 37.52 | 0.19 | 6041.00 | 0.00 | 6041 | 0.08 | 0.05 |
| pmed31-p175.B | 350 | 4138 | 4138 | 0 | 4138 | 28.67 | 17.28 | 180.12 | 0.58 | 4138.00 | 0.00 | 4138 | 1.25 | 0.59 |
| pmed31-p43.B | 350 | 7320 | 7320 | 0 | 7320 | 3.17 | 2.31 | 23.88 | 0.16 | 7320.00 | 0.00 | 7320 | 0.18 | 0.12 |
| pmed31-p87.B | 350 | 5621 | 5617.4 | 3.26 | 5621 | 30.30 | 15.45 | 70.01 | 0.23 | 5617.70 | 3.07 | 5621 | 0.54 | 0.53 |
| pmed32-p175.B | 350 | 4247 | 4243.7 | 0.9 | 4244 | 68.85 | 45.82 | 165.29 | 1.57 | 4244.70 | 1.79 | 4247 | 0.94 | 0.81 |
| pmed32-p43.B | 350 | 7899 | 7899 | 0 | 7899 | 3.26 | 5.88 | 23.60 | 0.17 | 7899.00 | 0.00 | 7899 | 0.22 | 0.22 |
| pmed32-p87.B | 350 | 5852 | 5845.2 | 3.52 | 5852 | 27.25 | 19.29 | 67.02 | 0.25 | 5847.70 | 3.66 | 5852 | 0.87 | 0.55 |
| pmed33-p175.B | 350 | 4156 | 4154.9 | 1.7 | 4156 | 65.87 | 41.12 | 173.18 | 1.21 | 4155.10 | 1.37 | 4156 | 0.63 | 0.28 |
| pmed33-p43.B | 350 | 7611 | 7611 | 0 | 7611 | 1.57 | 0.86 | 22.63 | 0.12 | 7611.00 | 0.00 | 7611 | 0.18 | 0.10 |
| pmed33-p87.B | 350 | 5840 | 5839.2 | 1.6 | 5840 | 27.54 | 20.27 | 67.73 | 0.31 | 5839.20 | 1.60 | 5840 | 0.51 | 0.43 |
| pmed34-p175.B | 350 | 4270 | 4270 | 0 | 4270 | 15.92 | 9.95 | 182.11 | 1.07 | 4270.00 | 0.00 | 4270 | 0.38 | 0.36 |
| pmed34-p43.B | 350 | 7514 | 7514 | 0 | 7514 | 0.39 | 0.28 | 24.21 | 0.10 | 7514.00 | 0.00 | 7514 | 0.06 | 0.04 |
| pmed34-p87.B | 350 | 5857 | 5855.7 | 1.35 | 5857 | 24.51 | 18.32 | 69.95 | 0.28 | 5856.20 | 1.25 | 5857 | 0.51 | 0.34 |
| pmed35-p100.B | 400 | 5639 | 5639 | 0 | 5639 | 26.37 | 23.00 | 115.73 | 0.71 | 5639.00 | 0.00 | 5639 | 0.79 | 0.45 |
| pmed35-p200.B | 400 | 4109 | 4108.3 | 1.19 | 4109 | 126.49 | 96.34 | 300.89 | 2.66 | 4108.30 | 1.19 | 4109 | 1.41 | 0.92 |
| pmed35-p50.B | 400 | 7570 | 7570 | 0 | 7570 | 0.89 | 0.37 | 42.20 | 0.27 | 7570.00 | 0.00 | 7570 | 0.15 | 0.10 |
| pmed36-p100.B | 400 | 6219 | 6214.3 | 3.00 | 6219 | 28.06 | 16.35 | 114.68 | 0.48 | 6214.70 | 3.03 | 6219 | 1.73 | 3.07 |
| pmed36-p200.B | 400 | 4321 | 4318.4 | 1.5 | 4321 | 113.80 | 67.75 | 264.96 | 5.36 | 4319.00 | 1.61 | 4321 | 1.33 | 1.15 |
| pmed36-p50.B | 400 | 8144 | 8144 | 0 | 8144 | 0.77 | 0.51 | 39.69 | 0.25 | 8144.00 | 0.00 | 8144 | 0.22 | 0.12 |
| pmed37-p100.B | 400 | 6212 | 6209.2 | 1.99 | 6212 | 66.97 | 30.43 | 113.50 | 0.95 | 6209.40 | 2.06 | 6212 | 1.36 | 1.07 |
| pmed37-p200.B | 400 | 4609 | 4608.6 | 0.8 | 4609 | 113.79 | 94.86 | 317.46 | 1.23 | 4608.60 | 0.80 | 4609 | 0.35 | 0.36 |
| pmed37-p50.B | 400 | 8379 | 8379 | 0 | 8379 | 0.90 | 0.51 | 39.19 | 0.18 | 8379.00 | 0.00 | 8379 | 0.43 | 0.99 |
| pmed38-p112.B | 450 | 5949 | 5949 | 0 | 5949 | 65.23 | 37.18 | 199.65 | 0.56 | 5949.00 | 0.00 | 5949 | 0.50 | 0.40 |
| pmed38-p225.B | 450 | 4446 | 4443.9 | 2.17 | 4446 | 311.32 | 184.21 | 566.25 | 4.40 | 4444.30 | 1.79 | 4446 | 0.95 | 0.57 |
| pmed38-p56.B | 450 | 7535 | 7535 | 0 | 7535 | 7.50 | 10.63 | 67.94 | 0.39 | 7535.00 | 0.00 | 7535 | 0.48 | 0.51 |
| pmed39-p112.B | 450 | 6198 | 6198 | 0 | 6198 | 55.33 | 55.61 | 198.66 | 0.64 | 6198.00 | 0.00 | 6198 | 0.39 | 0.33 |
| pmed39-p225.B | 450 | 4268 | 4264.1 | 2.34 | 4266 | 225.23 | 177.94 | 526.57 | 6.26 | 4264.30 | 2.24 | 4266 | 2.27 | 2.59 |
| pmed39-p56.B | 450 | 7625 | 7625 | 0 | 7625 | 3.95 | 2.51 | 65.29 | 0.25 | 7625.00 | 0.00 | 7625 | 0.28 | 0.13 |
| pmed40-p112.B | 450 | 6200 | 6199.6 | 0.92 | 6200 | 83.50 | 64.81 | 190.87 | 0.49 | 6199.60 | 0.92 | 6200 | 2.16 | 1.46 |
| pmed40-p225.B | 450 | 4532 | 4530.3 | 2.1 | 4532 | 329.04 | 118.57 | 497.58 | 1.72 | 4530.30 | 2.10 | 4532 | 8.00 | 6.88 |
| pmed40-p56.B | 450 | 8022 | 8022 | 0 | 8022 | 5.05 | 7.39 | 64.37 | 0.54 | 8022.00 | 0.00 | 8022 | 0.37 | 0.19 |
| Average | 312.50 | 5884.26 | 5883.77 | 0.48 | 5884.22 | 26.29 | 16.92 | 82.47 | 0.50 | 5883.86 | 0.46 | 5884.24 | 0.53 | 0.46 |

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1-32
Table 5
Comparison of IG and IGV (in C++) on large instances

| Instance |  |  | IG |  |  |  |  |  |  | IGV (C++) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| filename | $n$ | $p$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{s t d}$ | $t^{\prime}{ }_{\text {avg }}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{s t d}$ |
| pmed21 | 500 | 125 | 7589.7 | 119.40 | 7669 | 161.04 | 72.29 | 293.93 | 3.15 | 7711.00 | 0.00 | 7711 | 3.36 | 3.30 |
| pmed21 | 500 | 166 | 6195.6 | 73.36 | 6252 | 319.46 | 113.83 | 437.96 | 5.04 | 6281.30 | 7.46 | 6287 | 14.27 | 16.10 |
| pmed22 | 500 | 125 | 8150 | 126.20 | 8245 | 177.26 | 70.59 | 287.59 | 9.01 | 8274.00 | 0.00 | 8274 | 2.76 | 1.70 |
| pmed22 | 500 | 166 | 6468.4 | 76.35 | 6608 | 275.41 | 111.79 | 421.37 | 14.30 | 6628.00 | 0.00 | 6628 | 2.25 | 1.02 |
| pmed23 | 500 | 125 | 7563.7 | 72.04 | 7642 | 169.80 | 30.23 | 277.84 | 5.21 | 7707.00 | 0.00 | 7707 | 2.39 | 1.69 |
| pmed23 | 500 | 166 | 6257.5 | 35.13 | 6300 | 230.20 | 99.06 | 417.37 | 11.00 | 6312.00 | 8.97 | 6319 | 48.57 | 59.61 |
| pmed24 | 500 | 125 | 7547.8 | 31.50 | 7588 | 173.77 | 64.24 | 280.09 | 5.85 | 7631.60 | 8.40 | 7642 | 9.80 | 12.80 |
| pmed24 | 500 | 166 | 6219.2 | 57.54 | 6276 | 224.69 | 102.38 | 432.43 | 12.20 | 6281.90 | 4.06 | 6289 | 26.68 | 36.05 |
| pmed25 | 500 | 125 | 7750.4 | 83.66 | 7857 | 197.76 | 76.57 | 303.51 | 4.05 | 7934.00 | 0.00 | 7934 | 1.85 | 1.58 |
| pmed25 | 500 | 166 | 6179.7 | 65.42 | 6315 | 285.64 | 97.62 | 440.09 | 13.80 | 6395.30 | 3.74 | 6399 | 1.25 | 0.85 |
| pmed26 | 600 | 150 | 7759.9 | 54.29 | 7808 | 482.34 | 180.16 | 752.07 | 13.00 | 7834.90 | 2.98 | 7836 | 62.46 | 76.85 |
| pmed26 | 600 | 200 | 6192.4 | 61.33 | 6298 | 593.02 | 263.02 | 1108.70 | 21.70 | 6342.40 | 2.29 | 6344 | 16.09 | 34.84 |
| pmed27 | 600 | 150 | 7557.9 | 58.14 | 7633 | 546.01 | 96.85 | 760.73 | 19.10 | 7709.00 | 0.00 | 7709 | 2.47 | 1.91 |
| pmed27 | 600 | 200 | 6110.7 | 39.14 | 6175 | 797.63 | 281.13 | 1127.40 | 34.80 | 6232.00 | 3.92 | 6240 | 3.94 | 3.52 |
| pmed28 | 600 | 150 | 7458.6 | 54.62 | 7535 | 533.20 | 165.86 | 720.81 | 16.10 | 7579.80 | 3.60 | 7581 | 6.34 | 5.15 |
| pmed28 | 600 | 200 | 6057.8 | 35.97 | 6098 | 675.22 | 295.53 | 1100.80 | 33.70 | 6156.90 | 0.30 | 6157 | 7.34 | 4.70 |
| pmed29 | 600 | 150 | 7801.6 | 81.48 | 7883 | 586.07 | 132.16 | 726.59 | 7.46 | 7905.00 | 0.00 | 7905 | 6.83 | 4.88 |
| pmed29 | 600 | 200 | 6247.7 | 38.76 | 6329 | 833.94 | 270.19 | 1114.70 | 16.80 | 6366.20 | 1.60 | 6367 | 14.45 | 20.96 |
| pmed30 | 600 | 150 | 7968.1 | 72.37 | 8068 | 505.81 | 188.56 | 752.89 | 9.64 | 8098.20 | 0.40 | 8099 | 8.41 | 6.70 |
| pmed30 | 600 | 200 | 6553.2 | 36.31 | 6600 | 701.01 | 278.64 | 1146.10 | 39.60 | 6644.30 | 10.93 | 6658 | 10.63 | 15.94 |
| pmed31 | 700 | 175 | 7621.6 | 117.80 | 7801 | 1029.04 | 504.02 | 1649.10 | 25.40 | 7862.00 | 0.00 | 7862 | 8.77 | 6.76 |
| pmed31 | 700 | 233 | 6215.7 | 95.56 | 6355 | 1871.97 | 554.79 | 2624.00 | 31.60 | 6388.90 | 0.30 | 6389 | 13.69 | 15.66 |
| pmed32 | 700 | 175 | 7914.7 | 52.34 | 7988 | 985.29 | 457.87 | 1609.60 | 34.40 | 8075.50 | 2.54 | 8079 | 8.11 | 7.03 |
| pmed32 | 700 | 233 | 6496.6 | 44.70 | 6578 | 1386.35 | 494.75 | 2480.10 | 56.20 | 6606.70 | 8.04 | 6616 | 27.05 | 29.06 |

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1-32
Table 5
Continued

| Instance |  |  | IG |  |  |  |  |  |  | IGV (C++) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| filename | $n$ | $p$ | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ | $t_{\text {avg }}{ }^{\prime}$ | $t^{\prime}$ std | $f_{\text {avg }}$ | $f_{\text {std }}$ | $f_{\text {best }}$ | $t_{\text {avg }}$ | $t_{\text {std }}$ |
| pmed33 | 700 | 175 | 7820.4 | 33.66 | 7888 | 1023.92 | 331.69 | 1629.50 | 9.97 | 7967.60 | 0.80 | 7968 | 4.66 | 1.77 |
| pmed33 | 700 | 233 | 6416.5 | 58.38 | 6480 | 1478.08 | 603.38 | 2536.60 | 78.20 | 6579.10 | 1.30 | 6582 | 6.99 | 4.08 |
| pmed34 | 700 | 175 | 7707.4 | 74.53 | 7863 | 1162.92 | 508.27 | 1676.30 | 54.60 | 7950.00 | 0.00 | 7950 | 8.86 | 15.32 |
| pmed34 | 700 | 233 | 6302.7 | 32.69 | 6377 | 1511.73 | 614.08 | 2446.60 | 54.40 | 6411.90 | 5.50 | 6416 | 11.03 | 5.19 |
| pmed35 | 800 | 200 | 7519 | 42.37 | 7580 | 2946.42 | 539.47 | 4086.80 | 92.30 | 7675.80 | 1.83 | 7677 | 10.81 | 6.49 |
| pmed35 | 800 | 266 | 6138.1 | 34.72 | 6203 | 3399.07 | 825.30 | 4626.90 | 103.00 | 6253.70 | 2.69 | 6257 | 14.36 | 17.25 |
| pmed36 | 800 | 200 | 8196.6 | 79.35 | 8283 | 1778.23 | 802.97 | 3229.30 | 50.90 | 8325.90 | 1.30 | 8327 | 21.94 | 14.32 |
| pmed36 | 800 | 266 | 6683.5 | 51.42 | 6745 | 2804.68 | 869.03 | 4758.40 | 62.30 | 6807.40 | 5.66 | 6817 | 24.63 | 12.45 |
| pmed37 | 800 | 200 | 8330.1 | 47.83 | 8420 | 2210.35 | 651.29 | 2989.20 | 66.90 | 8440.60 | 2.73 | 8443 | 92.53 | 222.80 |
| pmed37 | 800 | 266 | 6776.8 | 55.08 | 6834 | 3075.17 | 1466.10 | 4615.70 | 175.00 | 6927.70 | 1.19 | 6929 | 28.17 | 20.73 |
| pmed38 | 900 | 225 | 7794.2 | 66.24 | 7878 | 3420.46 | 1897.50 | 6239.10 | 115.00 | 7963.00 | 0.00 | 7963 | 16.04 | 9.46 |
| pmed38 | 900 | 300 | 6325.6 | 65.06 | 6417 | 5284.34 | 2930.10 | 9478.50 | 119.00 | 6513.80 | 3.57 | 6520 | 15.23 | 12.08 |
| pmed39 | 900 | 225 | 7902.1 | 105.00 | 8008 | 3410.52 | 1804.20 | 6255.10 | 78.50 | 8054.00 | 0.00 | 8054 | 24.41 | 18.91 |
| pmed39 | 900 | 300 | 6378.3 | 67.62 | 6452 | 6903.65 | 1775.60 | 9327.20 | 226.00 | 6570.70 | 0.46 | 6571 | 17.61 | 9.68 |
| pmed40 | 900 | 225 | 8452.3 | 67.29 | 8516 | 3814.37 | 1692.90 | 6009.70 | 61.10 | 8581.80 | 2.40 | 8584 | 27.86 | 15.09 |
| pmed40 | 900 | 300 | 6858.7 | 31.92 | 6912 | 6452.64 | 1999.40 | 9336.10 | 224.00 | 6994.00 | 2.37 | 6998 | 16.36 | 12.76 |
| Average | 670 | 195 | 7087 | 62.4 | 7168.9 | 1610.5 | 607.8 | 2512.7 | 50.4 | 7224.37 | 2.53 | 7227.20 | 16.28 | 19.18 |



Fig. 3. (a) The average hit times of IG and IGV (C++) for small instances. (b) Their side-by-side box plots without outliers.
and then IGV was run for the same amount of running time as spent by IG on each run of each instance, allowing a fair comparison of the obtained objective values.

Table 5 reports that, for all 40 instances, IGV obtains improved average (and best) objective values, compared to those of IG. Using a one-tailed paired $t$-test, the null hypothesis that IGV does not improve the average objective values $\left(f_{\text {avg }}\right)$ is rejected with a $p$-value $<1.3 \times 10^{-22}$.

## 6. Conclusions and future work

### 6.1. Conclusions

This paper proposed a new algorithm for the OpM problem. It hybridises techniques from the IG and VNS metaheuristics, which are among the effective metaheuristics for optimisation problems (Demir, 2022; Rocha et al., 2022). It generalises previous ideas in the literature such as the reduced local search (Herrán et al., 2020) and the replacement of the facility swap operation with two consecutive operations of closing and opening a facility (Lin and Guan, 2018; Herrán et al., 2020). The main structure is an improved hybrid of those used in the IG algorithm by Gökalp (2020) and the standard VNS as detailed in Section 3. The overall algorithm is still simpler than most existing metaheuristic algorithms for the problem, being centred on two unit operations of closing and opening a facility with no additional local search.

The proposed algorithm significantly outperformed the current state-of-the-art metaheuristic algorithms on existing benchmark instances, achieving better or the same objective values in far less time. We also introduced a new benchmark set of larger instances upon which the new algorithm was found to achieve better objective values than the current stateoftheart when allowed the same time. We thus conclude the proposed algorithm to be the new state-of-the-art metaheuristic algorithm for the OpM problem.

[^7]
### 6.2. Future work

There are several avenues for potential future work. First, we could seek to speed up the algorithm by using additional data structures to keep the second-nearest facility $F_{i}^{(2)}$ to client $i \in I$ and the set $C_{j}^{(2)}$ of clients whose second-nearest facility is $j \in J$.

Second, there is scope for more consideration of the algorithm parameters $\gamma$ and $\tau$. In the comparisons above these were fixed to 0.6 and 6 . Because their values can significantly affect the performance of the algorithm, a valuable future work can be the investigation of various mechanisms to set these parameters. That is, we go beyond simply tuning them for a given dataset as in Section 5.2 and set them on a per-instance basis and even change them dynamically as the algorithm runs. Machine learning may be used for this purpose. Another approach is to view the problem of obtaining the best values of $\gamma$ and $\tau$ as an optimisation problem on its own and apply a high-level metaheuristic algorithm to obtain suitable values. It could also be worth investigating alternative mechanisms to set the control variable $\alpha$ and the reconstruction size radius.

Because of the success of the proposed algorithm IGV, compared to the stateof the art for OpM and the similarity of pM to OpM , another future work is to adapt the algorithm to address pM . The only difference between these problems is that the objective function is to be minimised for pM instead of maximised. Therefore, the IGV algorithm can be readily used for pM after making the following minor changes:

1. Replace ' $>$ ' with ' $<$ ' in lines 13 and 16 of IG1 and IG2 (Algorithm 2), and replace 'min' with 'max' in lines 20.
2. Change the direction of the comparison in line 5 of both the Close_facility and Open_facility functions (Algorithms 3 and 4). Change ' -1 ' to ' $\infty$ ' in lines 2 and 11 in Close_facility and ' $\infty$ ' to ' -1 ' in the same lines in Open_facility.

This means that another potential contribution of this paper could be to bridge the gap between the literatures of these two problems, allowing to unify the research for them. Currently, there are different algorithms and even different benchmarks in the literature of these problems.

Finally, a natural avenue for future work is to adapt the proposed algorithm to address other facility location problems. Because of its significant results in this paper, the algorithm or its ideas may even be adapted for other NP-hard optimisation problems.

## Acknowledgments

The authors would like to thank Dr. O. Gökalp and Dr. J. Chang for promptly replying to enquiries and providing their source codes. They also thank the anonymous reviewers of both this and the previous version of this manuscript for their useful suggestions.

## References

Beasley, J.E., 1990a. OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41, 11, 1069-1072.

Beasley, J. E., 1990b. OR-library. Available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html (accessed 30 September 2020).
Belotti, P., Labbé, M., Maffioli, F., Ndiaye, M.M., 2007. A branch-and-cut method for the obnoxious p-median problem. 4OR 5, 4, 299-314.
Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and conceptual comparison. $A C M$ Computing Surveys (CSUR) 35, 3, 268-308.
Chang, J., Wang, L., Hao, J.K., Wang, Y., 2021. Parallel iterative solution-based tabu search for the obnoxious p-median problem. Computers \& Operations Research 127, 105155.
Church, R.L., Drezner, Z., 2022. Review of obnoxious facilities location problems. Computers \& Operations Research 138, 105468.
Church, R.L., Garfinkel, R.S., 1978. Locating an obnoxious facility on a network. Transportation Science 12, 2, 107-118.
Colmenar, J.M., Greistorfer, P., Martí, R., Duarte, A., 2016a. Advanced greedy randomized adaptive search procedure for the obnoxious p-median problem. European Journal of Operational Research 252, 2, 432-442.
Colmenar, J. M., Greistorfer, P., Martí, R., Duarte A., 2016b. Optsicom project, University of Valencia, Spain. Available at http://grafo.etsii.urjc.es/optsicom/opm/ (accessed 26 October 2020).
Demir, Y., 2022. An iterated greedy algorithm for the planning of yarn-dyeing boilers. International Transactions in Operational Research. https://doi.org/10.1111/itor. 13232
Erkut, E., Neuman, S., 1989. Analytical models for locating undesirable facilities. European Journal of Operational Research 40, 3, 275-291.
Gökalp, O., 2020. An iterated greedy algorithm for the obnoxious p-median problem. Engineering Applications of Artificial Intelligence 92, 103674.
Herrán, A., Colmenar, J.M., Martí, R., Duarte, A., 2020. A parallel variable neighborhood search approach for the obnoxious p-median problem. International Transactions in Operational Research 27, 1, 336-360.
Lin, G., Guan, J., 2018. A hybrid binary particle swarm optimization for the obnoxious p-median problem. Information Sciences 425, 1-17.
Mladenović, N., Labbé, M., Hansen, P., 2003. Solving the p-center problem with tabu search and variable neighborhood search. Networks: An International Journal 42, 1, 48-64.
Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A., 2007. The p-median problem: a survey of metaheuristic approaches. European Journal of Operational Research 179, 3, 927-939.
Mladenović, N., Todosijević, R., Urošević, D., 2016. Less is more: basic variable neighborhood search for minimum differential dispersion problem. Information Sciences 326, 160-171.
Mladenović, N., Alkandari, A., Pei, J., Todosijević, R., Pardalos, P.M., 2020. Less is more approach: basic variable neighborhood search for the obnoxious p-median problem. International Transactions in Operational Research 27, 1, 480-493.
Mousavi, S.R., 2023. Exploiting flat subspaces in local search for $\mathrm{p}-$ Center problem and two fault-tolerant variants. Computers \& Operations Research 149, P. 106023.
Plastria, F., 1996. Optimal location of undesirable facilities: a selective overview. JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science 36, 2-3, 109-127.
Pullan, W., 2008. A memetic genetic algorithm for the vertex p-center problem. Evolutionary Computation 16, 3, 417-436.
Reese, J., 2006. Solution methods for the p-median problem: an annotated bibliography. NETWORKS: An International Journal 48, 3, 125-142.
Rocha, C., Pessoa, B.J., Aloise, D., Cabral, L.A., 2022. An efficient implementation of a VNS heuristic for the weighted fair sequences problem. International Transactions in Operational Research. https://doi.org/10.1111/itor. 13197
Tamir, A., 1991. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics 4, 4, 550-567.

[^8]
[^0]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^1]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^2]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^3]:    © 2023 The Authors.
    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^4]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^5]:    (C) 2023 The Authors.

    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^6]:    © 2023 The Authors.
    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^7]:    © 2023 The Authors.
    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

[^8]:    © 2023 The Authors.
    International Transactions in Operational Research published by John Wiley \& Sons Ltd on behalf of International Federation of Operational Research Societies

