
Journal of Symbolic Computation 123 (2024) 102276
Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Explainable AI Insights for Symbolic

Computation: A case study on selecting the

variable ordering for cylindrical algebraic

decomposition

Lynn Pickering a, Tereso del Río Almajano b,
Matthew England b, Kelly Cohen a

a Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, 45221, OH, USA
b Research Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1
5FB, West Midlands, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2023
Received in revised form 29 August 2023
Accepted 9 November 2023
Available online 15 November 2023

MSC:
68W30
68T20

Keywords:
Explainable AI
Computer algebra
Heuristic development
Cylindrical algebraic decomposition
Variable ordering

In recent years there has been increased use of machine learning
(ML) techniques within mathematics, including symbolic compu-
tation where it may be applied safely to optimise or select al-
gorithms. This paper explores whether using explainable AI (XAI)
techniques on such ML models can offer new insight for symbolic
computation, inspiring new implementations within computer al-
gebra systems that do not directly call upon AI tools. We present a
case study on the use of ML to select the variable ordering for
cylindrical algebraic decomposition. It has already been demon-
strated that ML can make the choice well, but here we show how
the SHAP tool for explainability can be used to inform new heuris-
tics of a size and complexity similar to those human-designed
heuristics currently commonly used in symbolic computation.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

E-mail address: Matthew.England@coventry.ac.uk (M. England).
https://doi.org/10.1016/j.jsc.2023.102276
0747-7171/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jsc.2023.102276
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2023.102276&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Matthew.England@coventry.ac.uk
https://doi.org/10.1016/j.jsc.2023.102276
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
1. Introduction

1.1. Machine learning and mathematics

Machine Learning (ML) refers to statistical techniques that learn rules from data. They allow com-
puter systems to improve their performance on a task without any change to their explicit program-
ming. ML underpins the prominent AI advances of recent years, driven forward by the growth in
available data and computing power, new ML architectures, and hardware designed specifically for
them.

There are increasing attempts to use ML in mathematics. For example, Lample and Charton (2020)
trained a transformer to integrate expressions and find analytical solutions to differential equations;
while in a survey article He (2022) details a variety of attempts to use ML to predict properties from
mathematical structures such as groups and graphs. We note a recent special issue of this Journal of
Symbolic Computation dedicated to Algebraic Geometry and Machine Learning (Hauenstein et al., 2023)
including ML approaches to e.g. find the real discriminant locus (Bernal et al., 2023). However, it
has been observed that mathematical and logical reasoning is an area of particular difficulty for ML,
especially the recent natural language tools such as ChatGPT.1

Symbolic computation is not an obvious domain in which to apply ML. The Computer Algebra
Systems (CASs) which implement symbolic computation algorithms are mainly designed to produce
exact answers; rarely using numeric computation in preference for symbolic solutions. Lample and
Charton (2020) reported that their Transformer2 was able to integrate far more examples correctly
within a time limit than various CASs. However, this analysis combined two very different cases of
failure: when a solution could not be found within a time limit and when the wrong solution is
found. While the CASs may not solve problems quickly, they should never produce the wrong answer.
Thus there is little appetite amongst CAS developers to use ML for directly producing output.

1.2. Safe use of machine learning in computer algebra systems

This does not mean that ML has nothing to offer Symbolic Computation. CAS algorithms often
come with choices that have no effect on the mathematical correctness of the end result but can have
a big impact on the resources required. Further, they can affect how the end result is presented (i.e.
two very different, but mathematically equivalent, expressions). Consider for example the algorithm of
Buchberger (2006) to produce a Gröbner Basis for an ideal. It does not specify the order in which S-
pairs are computed, the order in which the corresponding S-polynomial is reduced by the generating
set, the monomial ordering to be used, nor the underlying variable ordering. Any decision for these
choices allows the production of a correct Gröbner Basis but each decision affects the size of the basis
produced, the polynomials within, and the time taken to compute them.

Sometimes there are well-documented strategies on how CASs make such choices (e.g. sugar se-
lection for S-pairs (Giovini et al., 1991)) but in many cases, they rely on human-made heuristics
or “magic constants” (Carette, 2004) which are often not scientifically validated or even documented.
Such choices are good candidates for ML: the underlying relationships are complex but not the main
object of study. The earliest examples of ML for CAS optimisation known to the authors are: Huang
et al. (2014) using a support vector machine to choose the variable ordering for cylindrical algebraic
decomposition; Kuipers et al. (2015) using a Monte-Carlo tree search to find the representation of
polynomials that are most efficient to evaluate; Simpson et al. (2016) using ML classifiers to pick
from various algorithms that compute the resultant; Huang et al. (2016) using ML to decide whether
to precondition input for cylindrical algebraic decomposition; and Kobayashi et al. (2016) using ML to
decide the order of sub-formulae solving for real quantifier elimination.

1 See e.g. this blog post by S. Wolfram: https://writings .stephenwolfram .com /2023 /01 /wolframalpha -as -the -way-to -bring -
computational -knowledge -superpowers -to -chatgpt/.

2 A particular design of ML model that has found great success in natural language processing tasks: it is used for example
by ChatGPT.
2

https://writings.stephenwolfram.com/2023/01/wolframalpha-as-the-way-to-bring-computational-knowledge-superpowers-to-chatgpt/
https://writings.stephenwolfram.com/2023/01/wolframalpha-as-the-way-to-bring-computational-knowledge-superpowers-to-chatgpt/

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
In all of these examples, the ML solution outperformed the previous human-made heuristics for
the choices, at least on the dataset used. The algorithms of symbolic computation are often expo-
nential in their worst-case complexity but the average case complexity is less widely studied. It is
possible that these ML optimisations may offer a route to avoid the worst case, at least for many
applied examples. Thus there is great value in their continued study and exposition. However, the
motivation of the present paper is whether ML can offer anything more than these efficiency gains.
A recent article in Nature by Davies et al. (2021) suggested that ML can help pure mathematicians
with the development of new theorems. Can ML offer such insight to the developers of symbolic
computation algorithms?

1.3. Explainable artificial intelligence

Explainable AI (XAI) refers to ML techniques which offer an explanation as to how an AI decision
was made. It has become a very active area of research, see for example DARPA’s XAI program (Gun-
ning and Aha, 2019). The role of XAI is usually to allow for more effective use of the AI tools, and the
building of user trust in the tools. But in our case, we hypothesise that XAI could reveal workings of
the ML model that are useful to inform further development of the underlying symbolic computation.

We were motivated by the work of Peifer et al. (2020) developing an ML solution to the problem of
selecting S-pairs in Buchberger’s algorithm. They trained an “agent” (ML model) to make the decision
using reinforcement learning3 based on the number of polynomial additions required to process the
choice. This agent outperformed existing strategies such as (Giovini et al., 1991). We draw attention to
(Peifer et al., 2020, Section 5.1) which tried to explain the agents’ strategy (albeit without employing
XAI tools). It identified some simple components such as a preference for pairs whose S-polynomials
are monomials and a preference for pairs whose S-polynomials are low degree. Firstly, these compo-
nents suggested decisions made on the basis of the S-polynomials rather than the S-pairs,4 which is
what all the human-made heuristics consider. Hence this opens a whole new category of heuristics
to consider, perhaps leading to a greater understanding of the problem. Secondly, experiments using
these strategies alone showed they outperformed the existing heuristics (but not the full ML agent).
Thus the analysis suggests new “human-level” heuristics, i.e. heuristics of a similar size to those that
are human-made and that, once discovered, can be implemented without any AI tools.

The present paper seeks to identify if XAI tools can offer an automated way to make such analyses,
to gain new understanding of these heuristic choices in symbolic computation algorithms.

1.4. Contributions and plan of the paper

In this paper, we return to the problem of selecting the variable ordering for cylindrical algebraic
decomposition, the first CAS optimisation by ML that was considered in (Huang et al., 2014). We intro-
duce the necessary background information on this problem in Section 2. We then apply the popular
SHAP methodology for XAI to an existing ML pipeline developed for the problem: we introduce SHAP
in Section 3 and report on the results of its application on this problem in Section 4. In Section 5 we
process the SHAP data to suggest some XAI-recommended features for the problem, and in Section 6
we report on the performance of human-level heuristics based upon these. The code and data under-
pinning these results are openly available from Zenodo here: https://doi .org /10 .5281 /zenodo .8229298

We find that one of the features recommended by XAI is the same as that used in the current
state-of-the-art human-developed heuristic for the problem (del Río and England, 2022), and further,
that a human-level combination of XAI selected features allows us to outperform that prior work.
Thus our contributions are: (a) a new state-of-the-art human-level heuristic, at least in three variable
problems, and perhaps more importantly; (b) evidence for a new methodology to employ in CAS
development that uses AI in algorithm design but not implementation.

3 With reinforcement learning, instead of having a labelled dataset to train against, the agent repeatedly makes decisions
which receive a score that they seek to optimise.

4 even though it was properties of the pairs fed to the network.
3

https://doi.org/10.5281/zenodo.8229298

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
2. Cylindrical algebraic decomposition

2.1. Cylindrical algebraic decomposition

Cylindrical Algebraic Decomposition (CAD) is an important symbolic computation algorithm, pro-
posed by Collins (1975) in 1975. Given a set of multivariate polynomials and a variable ordering,
CAD will decompose the corresponding real space into connected regions, called cells, such that
within each the sign of each polynomial is invariant (i.e. positive, negative or zero). Each cell is semi-
algebraic, meaning it may be defined by a set of polynomial constraints; and the cells are arranged in
cylinders with respect to the variable ordering, meaning the projections of any two cells onto a lower
dimensional space with respect to the ordering are either equal or disjoint.

CAD has found applications in various fields, ranging from robotics (Manubens et al., 2012) through
economics (Mulligan et al., 2018) to biology (Röst and Sadeghimanesh, 2021). It is most commonly
used for, and was proposed by Collins (1975) as, a sub-method to perform real Quantifier Elimination
(QE): i.e. to transform a formula in first-order logic whose atoms are Boolean constraints to an equiv-
alent one without any quantifiers. The decomposition into cells allows for studying the problem at a
finite number of points, while the cylindrical structure allows for easy projection and negation of the
cells to construct the quantifier-free solution.

However, CAD has a worst-case theoretical complexity that grows doubly exponential in the num-
ber of variables (Davenport and Heintz, 1988); something regularly encountered in practice and thus
vastly reducing the scope of use cases for the algorithm. There have thus been many lines of research
to improve CAD, such as improved projection operators (McCallum et al., 2019), partial CAD (Collins
and Hong, 1991), equational constraints (England et al., 2020), symbolic-numeric lifting (Strzeboński,
2006), alternative computation schemes via triangular decomposition (Chen et al., 2009) and incre-
mental processing of polynomials (Kremer and Ábrahám, 2020), and entirely new repackaging of the
CAD theory (Brown, 2015), (Jovanovic and de Moura, 2012).

2.2. CAD variable ordering

CAD, including all the optimised and extended forms listed above, requires there to be a declared
ordering on the variables. This controls both the order of operations in the algorithms and the form
of the output (being used in the definition of the cylindrical structure). Depending on the application,
there may be a free or constrained choice for the ordering. For example, when using CAD for real QE
the variables must be ordered as they are quantified: but variables in blocks of the same quantifier
(and free variables) can be swapped with each other.

This choice of variable ordering has been shown to have a huge impact, both practically (Dolzmann
et al., 2004) and in terms of theoretical complexity: Brown and Davenport (2007) showed there exists
a family of polynomial sets such that the complexity of CAD can be constant or doubly exponential
depending on the chosen variable ordering. It is possible to appreciate the importance of variable
ordering in the simple two-variable example of Fig. 1, where using one of the orderings generates
almost twenty times more cells than using the other.

2.3. Prior human-designed heuristics for choosing the ordering

Once the importance of variable ordering was established, researchers began looking for strategies
to choose a good variable ordering. The first attempts consisted of designing human-made heuris-
tics. Brown (2004) documented a heuristic based on three simple hand-picked features of the set of
polynomials, for the software QEPCAD. We call this heuristic Brown.

There have been other heuristics produced which can offer greater accuracy but at greater expense,
performing increasing numbers of steps in the CAD algorithm: Dolzmann et al. (2004) concluded it is
best to perform the projection stage of CAD and compare sums of the total degree of the polynomials
produced (sotd); Bradford et al. (2013) considered the initial decomposition of the real line; and
Wilson et al. (2015) the open cells in the decomposition. It is perhaps surprising that the original
heuristic of Brown is able to perform competitively or even beat these others despite having access
4

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Fig. 1. CADs sign-invariant for the set of polynomials {x5 + 5x4 + 5x3 − 5x2 − 6x − 2y}. Using ordering x � y, we obtain a CAD
with 57 cells (18 shaded areas, 27 curve segments and 12 points). Using the ordering y � x generates only 3 cells (2 areas and
one curve).

to less information (Huang et al., 2019). This suggests the necessary information to identify a good
ordering may be available from the input alone.

Most recently, del Río and England (2022) designed a new simple heuristic gmods based on prop-
erties of the input polynomials, selected by studying which features of the input polynomials have
the greatest impact on the complexity analysis of CAD.

2.4. Prior AI-designed heuristics for choosing the ordering

In the last decade machine learning models have also been trained to select the variable order-
ing for CAD. The first attempt was made by Huang et al. (2014) in 2014 who used a support vector
machine for the task. Later England and Florescu (2019) experimented with a wider range of mod-
els, methods for feature engineering (Florescu and England, 2019) and improved metrics for training
(Florescu and England, 2020a), culminating in a machine learning pipeline available to use for the
task (Florescu and England, 2020b). Separately Chen et al. (2020) experimented with deep learning
for variable selection.

In all the experiments performed in this paper, these ML models outperform existing heuristics.
However, CAS developers may still be reluctant to include a method trained using ML in their soft-
ware, possibly because they create a dependence on external code, or more likely due to concerns
about whether over-fitting on the training data will lead to poor generalisation. Another issue is the
lack of explanation these AI models are able to give about their choices.

Later, in Section 4, we will use the infrastructure for a ML selection of the CAD variable ordering
presented by Florescu and England (2020b) in our own XAI analysis. In that paper, the authors present
a pipeline to train four ML models on the task. When specified to three variables polynomials the
pipeline utilises the ideas described by Florescu and England (2019) to represent such polynomials
with 81 features (which evaluate to floating point values). It is these numerical feature vectors that
are presented to the ML models.

In this paper, we propose an approach that is somewhere in between those of this subsection and
the previous one. Rather than handpicking some features as in Section 2.3, we will start with the
algorithmically produced features of Section 2.4 but then use XAI techniques to extract the most im-
portant features from the AI model and use these to design heuristics that could easily be understood
by humans and embedded into any CAD implementation without the subsequent use of ML software.

3. Explaining machine learning models

XAI is often motivated as a means to build trust in the tool among users. But there are certainly
other reasons we may require an explanation of an ML model. Perhaps the model is making a poor
decision and the data scientist wishes to understand why so as to improve it; or perhaps the explana-
tion tells us more about the underlying trends of data leading to new research directions. The latter
is the motivation for explainability in this work. Within the XAI field there is a growing emphasis
5

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
on designing models that are intrinsically explainable,5 however, the most common approach in use
today is post-hoc explainability whereby a model is analysed after its creation and an explanation is
generated. The review article by Du et al. (2019) offers a good overview of XAI.

Since we work with the existing ML pipeline (Florescu and England, 2020b) already designed for
the problem we do not consider editing the ML itself for explainability but instead revert to the more
common post-hoc analysis. That pipeline works with several ML models, and so we desire a model-
agnostic method for explainability. The following is the current state-of-the-art process for this.

3.1. SHAP

Molnar (2023) gives an overview of many explainability methods along with their advantages and
disadvantages. The choice of explainability method will have an impact on what conclusions may be
drawn. SHAP (SHapley Additive exPlanations), a model agnostic method, (Lundberg and Lee, 2017) is
chosen as our method of post-explainability analysis for identifying the features that have a greater
impact on the output of the ML models. The SHAP approach was introduced in 2017 by Lundberg and
Lee (2017) as a unification of six existing explanation methods already present in the literature: LIME,
DeepLIFT, Layer-Wise Relevance Propagation, Classic Shapley Regression Values, Shapley Sampling Val-
ues, and Quantitative Input Influence. Because SHAP unifies these various methods, it can be used for
both a global and local explanation of models: i.e. it can offer explanations for performance on an
individual problem or an entire dataset. A theorem in Lundberg and Lee (2017) shows that there is
only one possible additive feature attribution method (SHAP) that holds local accuracy, missingness
(a missing feature must have no impact) and consistency properties.

The name and theory behind SHAP is based on the classical concept of Shapley values from game
theory, which quantifies the contribution of each player to a game (Shapley, 1953). It makes use of
an explainer model, which is an approximation of the original model. The idea is to figure out the
contribution of each player to the score of the game by playing the game with all the combinations of
players, or the power set of the players. Take an example game with three players: Player 1, Player 2,
and Player 3. Each player plays the game by themselves, then each player plays the game with each
of the other two, and finally they all play the game together. We calculate the difference between the
final scores of each game where Player 1 was not present, and when Player 1 was present under a
weighting to get the contribution of Player 1 to the game. In our application of SHAP, the features of
our polynomial sets are the players and the ML models are the games. SHAP removes and adds each
feature to the model to see what effect that feature has.

Since we are working over the power set of all the features in the model, such a calculation
becomes very expensive quickly: exponential on the number of features in a model (Lundberg and
Lee, 2017). However, the SHAP open source package of Lundberg (2022) uses many estimators and
powerful shortcuts to make the extensive power set of calculations possible for larger models. For
example, Kernel SHAP, used to analyse all the models other than decision tree in this work, uses a
special weighted linear regression in computing a feature’s importance (Lundberg and Lee, 2017). For
the decision tree model, the tree explainer is used. This is a fast method to estimate SHAP values for
tree models (Lundberg et al., 2020).

3.2. SHAP waterfall plots

Fig. 2 shows an example of a SHAP waterfall plot: one visualization in SHAP for understanding a
model’s decision on a single instance. The ML model studied here was trained to decide whether a
wine has a quality rating higher than 5 (on a scale of 1 − 10).

The horizontal axis plots the probability of the wine having quality higher than 5 on the scale.
We see that the model predicts this with probability 0.993 for this instance (this particular wine),
indicating a strong predicting that it will be ranked in the top half of the quality scale.

5 There are well-established views on which models are intrinsically explainable and an assumed tradeoff against perfor-
mance with e.g. neural networks offering the best performance but the least explanation. However, in practice this trade-off is
not always so clear, see e.g. (Herm et al., 2022).
6

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Fig. 2. SHAP waterfall plot reproduced from an online tutorial (https://medium .com /dataman -in -ai /the -shap -with -more -elegant -
charts -bc3e73fa1c0c) where it appears as the second image in Section 3.2. The plot explains the prediction by an XGBoost
model for whether a particular wine has a rating in the top half of the quality scale, using the “Red Wine Quality” Kaggle dataset
(https://www.kaggle .com /datasets /uciml /red -wine -quality-cortez -et -al -2009).

The features that contribute to a prediction that a wine has a quality rating strictly over 5 are
the red bars, while the features that contribute to a prediction that a wine has a quality rating of
5 or under are the blue bars. The features from top to bottom are those that have the largest effect
on the final model output. Thus we see that, for this example, the feature sulphates (which is a
measure of the presence of this wine additive) is the feature with the most impact on this prediction.
The instance from the data set under study had 0.68 value for sulphates as indicated in gray on the
vertical axis: the value of this feature in the whole dataset ranged from 0.33 − 2.

Below the horizontal axis we see E[f (X)] which is the base value for this probability. It is the
average of the output across all the instances, which would be the best guess a model would have
for this dataset if there were no features for the instance to consider. Thus the waterfall plot explains
the difference between a particular prediction f (x), and this base prediction E[f (x)] for the dataset,
and how each feature contributed to this difference.

3.3. Multi-class SHAP

The ML pipeline we experiment with is designed for multi-classification, i.e. classification with
more than two output classes. SHAP may also be applied for multi-classification. It simply creates a
binary model for each output, with the binary SHAP model that reaches an output closest to one for
an instance giving the prediction. Section 4.2.1 provides a more detailed example of this in practice.

4. SHAP applied to ML for CAD variable ordering

We work with the feature engineering approach to the problem developed by Florescu and England
(2019). This algorithmically generates features to represent systems of polynomials to ML models. It
was inspired by the earlier hand-picked features based on variable degree and sparsity (Brown, 2004),
(Huang et al., 2014) and generalises this to the widest set of such features that could be generated in
a similar way. When applied to three variable polynomial systems this framework creates 81 distinct
7

https://medium.com/dataman-in-ai/the-shap-with-more-elegant-charts-bc3e73fa1c0c
https://medium.com/dataman-in-ai/the-shap-with-more-elegant-charts-bc3e73fa1c0c
https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
features, which the pipeline of Florescu and England (2020b) uses as the input to train four ML models
(implemented in Python from the scikit-learn package (Pedregosa et al., 2011)) which are: Decision
Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron
(MLP).6

We fit model hyperparameters using the same cross-validation procedure of Florescu and England
(2020b). The DT uses a random splitter with a max depth of 5, and the gini criterion to measure the
quality of a split in the tree. The KNN uses the ball tree algorithm to find the 18 nearest neighbors and
distance to weight the points in the neighborhood. The SVM has a gamma of 0.08, and the radial ba-
sis function kernel. The MLP has logistic activation, hidden layer sizes of 2, and the lbfgs solver.7 The
output that each model predicts is a class (1−6) representing one of the six possible variable order-
ings of three variables. In these papers, the experiments showed the ML models to all outperform the
best performing human-made heuristic of the time, that of Brown (2004). Although Brown’s heuristic
has since been outperformed by the heuristic gmods obtained by del Río and England (2022).

The work described in this section uses SHAP to gain insight into how those ML models of Flo-
rescu and England (2020b) achieve this performance. We seek to understand whether the ML models
find the most important features to be those selected by humans, which are then supplemented with
additional information; or whether they instead rely on some previously overlooked feature. This sec-
tion first looks at the decision-making process for a single test instance to gain a local understanding
of a particular ML model (the MLP). The process from the local decision to the global decision is
then explained, and the top five features across the entire model, for each model are identified and
discussed.

4.1. Methodology

The methodology used in applying SHAP to ML algorithms for picking the CAD variable ordering is
described next, starting with the data set used to train the algorithms, the specific manner in which
SHAP was implemented, and details on the features used as input to the ML algorithms.

4.1.1. Dataset
We started by recreating the experiments of Florescu and England (2020b). These used a dataset

of random problems generated with the same statistical properties as the industrial problems hosted
in the QF_NRA category of the SMT-LIB (Barrett et al., 2016). We identified that the dataset used in
Florescu and England (2020b) had a majority of problems with class 5 or 6 as the output class. In
this paper, we applied the additional step of balancing the dataset so that the classes are more equal
in size. We take advantage of the fact that the nature of a polynomial set does not change with the
names of its variables. This allows for the random permutation of variable names (x1, x2, x3), and a
corresponding change of the best ordering for the output, to obtain a balanced version of the dataset.
As a reference of which output class number corresponds to which order of the variables, we refer to
Table 1.

We note that while this renaming makes no difference to the meaning of the dataset, training an
ML model on an unbalanced dataset can lead to the ML model simply choosing the class that occurs
the most often, and being rewarded for higher accuracy in this way. In general, we might expect this
to lead to overfitting, where the model may perform far worse on data from a different source. In our
experiments the Decision Tree was found to have particularly suffered from this, making far poorer
choices when trained with the balanced dataset, however, the other three models performed similarly
well with balanced and unbalanced data and in particular, still outperformed the human-designed
heuristics in the unbalanced case. The effect of such balancing on performance is explored in more
detail by del Rio and England (2023).

From the point of view of this paper, balancing is particularly important for explainability. Our
initial SHAP analysis on the models trained on the unbalanced dataset clearly reflected a simplis-

6 We refer a reader seeking the details of these models to e.g. the textbook Bishop (2006).
7 We refer a reader seeking the details of these implemented hyperparameters to the scikit-learn documentation for each

respective model as linked from: https://scikit -learn .org /stable /supervised _learning .html.
8

https://scikit-learn.org/stable/supervised_learning.html

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Table 1
The six possible variable orderings
for our dataset.

Ordering Name Ordering

Ordering 1 x1 � x2 � x3

Ordering 2 x1 � x3 � x2

Ordering 3 x2 � x1 � x3

Ordering 4 x2 � x3 � x1

Ordering 5 x3 � x1 � x2

Ordering 6 x3 � x2 � x1

Table 2
Wall clock runtimes of the
SHAP analysis for each model
with 500 training points and
100 test points. CPU used is
Intel(R) Xeon(R) CPU E5-1620
v3 @ 3.50 GHz.

Model Total Run Time
(HH:MM:SS)

KNN 07:02:42

MLP 00:09:52

DT 00:00:10

SVM 11:38:43

tic preference for the majority classes and gave us little insight into the important features of this
application.

4.1.2. SHAP
SHAP is run on the four ML models. Table 2 shows the very significant differences in SHAP run-

time between the models. This is due to both the nature of how long a single ML model takes to
calculate a prediction, and the approximations that the SHAP library is able to make use of. We note
that SHAP is a procedure we are running once to gain insight, and so are not greatly concerned
with its one-off cost. Due to the long-running time for SHAP, 500 training points are used for each
SHAP calculation, chosen randomly from the 2947 total training instances used to train the full models
described above, and the SHAP calculations are performed on just 100 test points. This gives sufficient
insight into the model decisions without requiring more than 12 hours of calculation time. We refer
back to Section 3.1 for information on how SHAP makes its calculations.

4.1.3. Features
The derivation of the features used in the dataset is explained by Florescu and England (2019). In

brief, instead of handpicking a set of features we algorithmically generate multiple features. This is
done by acting upon a list of lists of lists with the innermost list capturing the degrees of variables in
a monomial, which are gathered together next in polynomials, and then finally for the whole system.
The actions performed on these are simple (cheap) operations such as taking the maximum, sum
or average of the numbers. By looking at all possible combinations this method generates 81 distinct
features for three variable systems that are the input features for the ML models. We define in Table 3
some of the terminology used in creating these features.

For example, sum(max(v1(S))) is one of the features that multiple models place importance upon.
Its direct translation into plain English is “the sum across all polynomials of the maximum of the degrees
of its monomials for the variable x1”, i.e.

∑
p maxm∈p degree(x1, m) where m represents monomials and
9

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Table 3
Translation of Features.

Notation Text Translation

S Lists of polynomials.
E.g. S = [x1, x2

1 − 2x1x2
2 + x2

2 − 3].
vi(S) A list that has for each polynomial in S a list

of the degrees of xi in its monomials.
E.g. v2(S) = [[0], [0,2,2,0]].

svi(S) A list that has for each polynomial in S a list
of the total degrees in its monomials if xi appears
in the monomial, and 0 otherwise.
E.g. sv1(S) = [[1], [2,3,0,0]].

op(L) If L is a list it performs operation op upon it.
If L is a list of lists it returns a list containing the
the result of the operation for each of the original lists.
E.g. max(avg(sv1(S))) = max([1,5/4]) = 5/4.

sg(L) This returns the same structure as L where each
numerical value is substituted by its sign.
E.g. sum(sg(avg(sg(v2(S))))) = sum(sg([0,1/2]))

= sum([0,1]) = 1.

p polynomials. This simplifies to, “the sum across all polynomials of their degrees for the variable x1”, i.e. ∑
p degree(x1, p).
Similarly, the meaning of avg(sg(max(v1(S)))) is “the average across all polynomials of the sign of the

maximum of the degrees of its monomials for the variable x1”, which simplifies to “the average number of
polynomials that contain the variable x1”.

4.2. SHAP results

In this section, we interpret the results from SHAP when applied to our problem using the method-
ology above. First, we explain how it can be used to give an explanation for the classification of a
single problem instance: a local SHAP analysis. Then we aggregate across all instances to give an
overview of what SHAP tells us about the most relevant features for each model over the dataset: a
global SHAP analysis.

4.2.1. Local SHAP analysis
For each ML method, for each of the six binary classification models, and for each instance, SHAP

can produce a waterfall plot (see Section 3.2) to show the effect each feature has on the final output.
As an example, let us look in detail at the MLP model for a particular test instance. An explanation
for the binary classifier of whether or not the instance belongs to class 5 (selects Ordering 5) is given
via the waterfall plot in Fig. 3. The blue arrows in the waterfall indicate that the feature is pushing
the prediction towards an output of 0 (that Ordering 5 is the wrong ordering), and the red arrows
that the feature pushes towards an output of 1 (that Ordering 5 is the right ordering).

The binary classifier suggested the instance should be classified as Ordering 5 with a probability of
0.71. This was the highest probability among the six binary classifiers and so Ordering 5 was selected
as the classification. Orderings 1 − 4 get a score very close to 0. Ordering 6 receives a score much
higher than 0, but not as high as Ordering 5. This is not surprising: Orderings 5 and 6 both select the
same variable to project first and it is sensible to assume that this would have the greatest impact on
the calculation time of the CAD, since its effects will be magnified in the subsequent projections.

4.2.2. Global SHAP analysis
To get the global importance of the features for each model over the dataset we may aggregate

the absolute values of the contribution of the features across all instances and binary classifiers. After
this, the five most important features for each model found by SHAP are given in Table 4.
10

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Fig. 3. An explanation of a decision made by the MLP model on an example CAD problem instance, for the selected output
ordering, ordering 5: x3 � x1 � x2.

Plots of the relative importance of features to each model by class are given in Fig. 4. These plots
give a good insight into not only that feature’s impact but also how a model trains and learns from
the data. The KNN model, for example, creates little distinction between the impacts of the features.
This is what we would expect from a KNN, because the model is looking for those instances which are
most similar to the instance being evaluated to make a decision. It is the aggregate of the number of
instances similar to a certain test point that will decide the output. This applies similarly to the SVM.
For both models, this continues past the top five features. Specifically, the difference from the feature
with the highest average impact on the model output magnitude to the twentieth feature is about
0.012 for the KNN, and 0.005 for the SVM. In contrast, the MLP and DT models show more distinction
in the importance of these features: decision trees in particular are known to place importance on a
few features. To compare, the difference from the top to the fifth feature is about 0.28 for the ML.

Upon close examination of Fig. 4, some interesting phenomena may be observed. We see that often
the impact on the output class for features of a certain variable is largest if that variable is last in the
ordering of that output class. For example, the feature with the greatest impact on the KNN model
is an x3 feature, and Orderings 1 and 3 have the highest proportional impact which (referring back
to Table 1) are the orderings with x3 last. We see this for the x2 features and the SVM model as
well. But the MLP model shows different behaviour. Here, only x2 and x3 features are seen, and both
Orderings 3 and 5 have the greatest impact.

4.2.3. Features in human-designed heuristics
The Brown heuristic (Brown, 2004) uses three simple metrics to choose a variable ordering, all of

which may be described in the language of Section 4.1.3:

• max(max(vi(S))),
• max(max(svi(S))), and
• sum(sum(sg(vi(S)))).

We cannot compare directly to the features of the other human-designed heuristics in Section 2.3
as they all make use of expensive algebraic operations rather than using features from the input
polynomials alone.
11

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Table 4
The top five features that each model found to have the
highest average impact on model output magnitude.

KNN MLP

1 avg(max(v3(S))) sum(max(v3(S)))

2 sum(max(v3(S))) sum(max(v2(S)))

3 avg(max(v2(S))) sum(avg(v3(S)))

4 sum(max(v2(S))) avg(sum(sv3(S)))

5 max(max(v1(S))) sum(avg(v2(S)))

SVM DT

1 avg(max(v1(S))) avg(avg(v2(S)))

2 avg(max(v2(S))) avg(avg(sg(v1(S)))

3 sum(max(v2(S))) max(sum(v3(S)))

4 avg(max(v3(S))) avg(avg(v3(S)))

5 sum(max(v3(S))) avg(max(v1(S)))

5. Post SHAP analysis to identify the most relevant features

SHAP produced for us a global analysis explaining the features that are important to each of the
four ML models we experiment with. We now work to create a unified ranking of the features across
the four models for the purpose of creating new human-level heuristics in Section 6.

5.1. Merging features that generate the same heuristic

We aim for heuristics independent of particular variable names which are present in the ML
features. I.e. the prominence of sum(sum(v1(S))) in ML will lead us to the same heuristic as
sum(sum(v3(S))). So we now aggregate the contribution of the features across the three variables,
resulting in rankings like the one in Table 5 for each model. This reduces the original 81 features
to 27. We use vi(S) as a short notation to denote the combination across the three variables, i.e.
sum(sum(vi(S))) := ∑3

i=1 sum(sum(vi(S))).
Moreover, some features, even though they produce different values for the instances, share some

relations. In particular, some of these features are proportional to each other (e.g. sum(max(v1(S)))

is going to be a multiple of (avg(max(v1(S)))) for every set of polynomials and therefore they can
be seen theoretically to induce the same heuristics. This additional merging reduces the number of
features further to 18. The ranking of such features for the MLP model is given in Table 6. Similar
rankings are available for the other three models.

5.2. Creating a unified ranking

We now wish to create a combined feature ranking across the four models. We will create this by
viewing it as a voting problem, where each of the models has a different ranking for the features and
we have to get a combined ranking. A usual method to combine such rankings is the Borda Count:
where for each ranking we assign a penalisation of 1 to the first, 2 to the second, and so on; at the
end ranking the options from lowest penalization to highest. However, this method strongly penalises
being very badly ranked for just one of the models. Meaning that a feature that is the most relevant
for three of the models while being the most irrelevant for one of the models would not end up in a
good position in the final ranking.

Thus we use a modification, the Dowdall System, that assigns the first feature a reward of 1, the
second a reward of 1/2, the third receives 1/3, and so on until, at the end ranking the options from
higher reward to lowest. See for example the work of Fraenkel and Grofman (2014) on these different
12

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Fig. 4. The top five features for each model from aggregating over the 100 test points. Ordered by average impact on model
output magnitude, and coloured by output class. (For interpretation of the colours in the figure(s), the reader is referred to the
web version of this article.)

voting systems. We chose the Dowdall system because it allows merging the preferences without a big
penalisation for being a very distant preference for one of the models, contrary to the Borda Count.

Table 7 shows the features and their scores in our final ranking and their rewards from the Dow-
dall System. The most voted feature is the sum of the degrees of the polynomials in the set, which
is precisely the feature used in gmods (del Río and England, 2022), found through the study of the
13

Table 5
Features important for the Multi Layer
Perceptron after merging across the vari-
ables.

Feature Name Summed
SHAP Value

sum(max(vi(S))) 90.716

sum(avg(vi(S))) 57.566

sum(max(svi(S))) 41.69

sum(sum(vi(S))) 36.67

avg(avg(sg(vi(S)))) 35.676

avg(sum(svi(S))) 34.758

avg(max(svi(S))) 30.981

avg(avg(vi(S))) 29.248

sum(sum(svi(S))) 28.757

avg(avg(svi(S))) 26.053

sum(sum(sg(vi(S)))) 25.164

sum(sg(avg(vi(S)))) 23.751

sum(avg(svi(S))) 21.86

avg(sum(sg(vi(S)))) 21.495

sum(avg(sg(vi(S)))) 18.058

avg(sg(sum(vi(S)))) 16.486

max(max(vi(S))) 15.033

max(avg(vi(S))) 13.687

max(sum(svi(S))) 13.443

max(max(svi(S))) 12.029

avg(max(vi(S))) 11.864

max(max(sg(vi(S)))) 11.586

max(avg(svi(S))) 11.559

max(sum(vi(S))) 11.389

max(sum(sg(vi(S)))) 10.451

avg(sum(vi(S))) 9.318

max(avg(sg(vi(S)))) 7.493

complexity analysis of CAD. In this ranking: the eleventh, eighteenth (bottom) and eighth most voted
features are those used by the Brown heuristic (Brown, 2004).

The second most voted feature, the average across the polynomials of the average degree of the
variable across the monomials, is a feature that has been never considered relevant in any prior work.

The top six features are chosen for further experimentation in the next section to find new human-
level heuristics. We draw the line here as there is a big drop off and the lower features score more
similarly to each other, i.e. the feature scores stabilize after the sixth score. This stabilization of the
scores is illustrated in Fig. 5.

6. New human-level heuristics motivated by XAI

In this section, we will first introduce the methodology we use to evaluate a heuristic, and then
experiment with new human-level heuristics motivated by Section 5. We will compare these against
the current state-of-the-art heuristics for choosing the variable ordering for CAD.

To evaluate the performance of these heuristics two things are needed: a set of meaningful bench-
mark examples and metrics to quantify the performance of the heuristics on them. We will use the
benchmarks and metrics described recently by del Río and England (2022) for this purpose.
L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
14

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276

Table 6
Features in Multi Layer Perceptron after
merging those that would generate the
same heuristic.

Feature Name Summed
SHAP Value

sum(max(vi(S))) 102.58

avg(avg(vi(S))) 86.814

sum(max(svi(S))) 72.671

sum(sum(svi(S))) 63.515

avg(avg(sg(vi(S)))) 53.735

avg(avg(svi(S))) 47.913

sum(sum(sg(vi(S)))) 46.66

sum(sum(vi(S))) 45.988

avg(sg(sum(vi(S)))) 40.236

max(max(vi(S))) 15.033

max(avg(vi(S))) 13.687

max(sum(svi(S))) 13.443

max(max(svi(S))) 12.029

max(max(sg(vi(S)))) 11.586

max(avg(svi(S))) 11.559

max(sum(vi(S))) 11.389

max(sum(sg(vi(S)))) 10.451

max(avg(sg(vi(S)))) 7.493

Table 7
Voted score of merged and aggre-
gated features across all models.

Feature Name Voted
Score

sum(max(vi(S))) 3.333

avg(avg(vi(S))) 2.167

sum(sum(vi(S))) 1.158

avg(avg(sg(vi(S)))) 1.15

sum(sg(sum(vi(S)))) 0.794

sum(max(svi(S))) 0.787

avg(avg(svi(S))) 0.583

sum(sum(sg(vi(S)))) 0.554

max(sum(vi(S))) 0.475

sum(sum(svi(S))) 0.472

max(max(vi(S))) 0.467

max(sum(sg(vi(S)))) 0.3

max(avg(vi(S))) 0.245

max(max(sg(vi(S)))) 0.218

max(avg(sg(vi(S)))) 0.21

max(sum(svi(S))) 0.209

max(avg(svi(S))) 0.192

max(max(svi(S))) 0.191
15

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Fig. 5. Plot of feature scores from Table 7.

6.1. Benchmarks

We source benchmarks from the three-variable problems in the QF_NRA category of the SMT-
LIB (Barrett et al., 2016). These examples are all satisfiability problems and so do not represent the
full application range of CAD which can also address quantifier elimination. However, they do mostly
emit from real applications making performance upon them particularly meaningful. Common sources
are problems emitting from the theorem prover MetiTarski (Paulson, 2012), attempts to prove ter-
mination of term-rewrite systems, verification conditions from Keymaera (Platzer et al., 2009), and
parametrized generalizations of geometric problems, as well as problems emitting from economics
(Mulligan et al., 2018) and biology (Bradford et al., 2020).

A sign-invariant CAD is built using Maple (Chen et al., 2009) for each example in each variable
ordering: 5599 problems finished for at least one ordering before the time limit (60 seconds). Of
these, the authors select 1019 “unique” problems where, as described in (del Río and England, 2022,
Section 4.1), unique means the CAD tree structures built are not identical to another example for every
ordering. This benchmark merging is needed since some application sources in the SMT-LIB produce
examples that differ from each other only slightly, leading to identical CAD computations, and thus
potentially unfair evaluation. The benchmarks used here are identical to those of del Río and England
(2022), which are stored in an open source dataset released for that paper.8

The problems selected have a range of difficulties, as shown by the histogram in Fig. 6 which plots
the number of problems against the CAD computation time of their optimal ordering. The vertical
axis (number of problems) has a logarithmic scale, showing that the dataset has much more easy
problems. There is a need to enlarge the SMT-LIB with more difficult problems.

6.2. Evaluation metrics

For evaluation metrics, we again follow del Río and England (2022) and use the three selected
there as follows.

• Accuracy: Percentage of benchmarks in which the optimal ordering (quickest in runtime) co-
incides with that chosen by the heuristic.

This is the most commonly used tool in ML classification and was used to train the ML models
earlier.9 However, it is not ideally suited to our problem: it considers as equally wrong a terrible
ordering and an ordering that is slightly sub-optimal, even if the difference compared to the optimal
ordering is so small that it could be due to computational noise.

8 https://doi .org /10 .5281 /zenodo .6750528.
9 See (Florescu and England, 2020a) for an attempt to train ML partially with a different metric.
16

https://doi.org/10.5281/zenodo.6750528

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Fig. 6. Histogram showing how the 1019 problems selected from the SMT-LIB for our experiments range in difficulty. The
horizontal axis has 5 second time segments and the vertical axis shows the number of problems whose optimal ordering took
that level of computation time (in a logarithmic scale).

• Total time: Amount of time needed to create a CAD for each benchmark when choosing the
variable ordering given by the heuristic.

This metric corresponds most closely to the absolute performance achieved and would be most com-
monly used to rank a computer algebra implementation. However, it will not take into account the
chosen orderings for the smaller problems in our dataset and could allow a small number of large
problems to distort findings. Hence del Río and England (2022) proposed the next metric to address
the shortcomings of the above: a metric that does not ignore the simple problems, but at the same
time distinguishes between different non-optimal orderings.

• Markup: The markup of the time needed by the heuristic (theuristic) with respect to the time
using the optimal choice (toptimal). Defined as the average across all benchmarks of

markup = theuristic − toptimal

toptimal + 1
.

The +1 is included in the denominator to reduce the impact that the computational noise can
have on problems that only require tenths of seconds.

When a CAD could not be created within the time limit using the ordering chosen by a heuristic, the
time of the heuristic was set in the dataset to twice the time limit. These runtimes are also in the
Zendodo data release for (del Río and England, 2022).

6.3. Existing heuristics

The prior state-of-the-art heuristic for choosing CAD variable ordering is gmods, as presented by
del Río and England (2022). This is based on a metric motivated by the complexity analysis of CAD.
The analysis found that given a set of polynomials Sn and the ordering xin � · · · � xi1 , the maximum
number of cells that can be generated is proportional to

n∏

j=1

sum(max(vi j (S j))), (1)

where S j−1 is the projection of S j with respect to xi j .
17

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
The heuristic mods was first proposed by del Río and England (2022) as a heuristic that computes
the sets S1, . . . , Sn−1 for each variable ordering and then chooses the ordering that minimises the
worst case complexity, i.e. that minimises (1). This performed very well, in the sense that it chooses
good orderings. However, it is an expensive heuristic: the cost of computing the CAD projection phase
for all the orderings was not compensated by the improved quality of the ordering it chooses, at least
not for the dataset in question. This is illustrated later by the experimental results in Table 8, where
mods took into account the additional cost of the heuristic while free-mods does not, we report
on the performance of the hypothetical heuristic free-gmods for comparison purposes later.

To solve this issue del Río and England (2022) decided to avoid doing any projections for choosing
the variable ordering except those utilised by the actual CAD. They proposed to pick the first variable
of the ordering xin to be the one with minimal sum(max(vi(Sn))), choosing the one with the lowest
index in case of a tie. Only then do they take a CAD projection of Sn with respect to xin to obtain Sn−1,
which is then studied to pick the second variable xin−1 as the one with minimal sum(max(vi(Sn−1))).
This allows the heuristic to gather as much information as possible before choosing the next variable,
continuing this process to determine the whole variable ordering.

This heuristic does not require any more CAD projections than those needed to run the CAD al-
gorithm. In this paper we refer to heuristics that follow this structure as “greedy” (in the traditional
algorithmic sense that they make a choice based on the local information). All the heuristics intro-
duced below are greedy.10

Since the source benchmarks contain a bias towards certain orderings, the authors choose a vari-
able randomly whenever there is a tie, instead of choosing the one with the lowest index or the first
lexicographically which could allow that bias to effect the results.

For many years, a well-known and widely used heuristic is that of Brown (2004). Denoted Brown,
this uses three criteria, in turn, breaking ties with the subsequent ones. It projects first the variable
that minimizes:

• max(max(vi(S))), (i.e. variable with lowest overall degree);
breaking ties with

• max(max(svi(S))), (i.e. variable with the lowest total degree in the monomials containing it);
breaking ties with

• sum(sum(sg(vi(S)))), (i.e. number of terms containing the variable).

It is not specified what to do if there is a third tie: our implementation simply picks between the
tied variables randomly. Moreover, it is not specified whether the whole variable ordering is chosen
at once or one variable at a time. In this paper, we implement the greedy variant: i.e. we choose the
first variable to be projected, and then use the projected polynomials to choose the next variable in
the ordering.

Table 8 evaluates these existing heuristics on our benchmark set. We include also the performance
of a virtual best heuristic (the hypothetical heuristic which always picks the optimal ordering) to
show the best possible figures for the dataset, and a heuristic that picks at random. As in (del Río
and England, 2022) we find gmods to be the best of all metrics except accuracy: where it is beaten
by mods but at a cost not worth paying for this dataset.

Note that for some heuristics the number of problems completed is not a natural number. This is
because the heuristic is not deterministic (due to the random choices to break ties) and the experi-
ments are repeated 5000 times to obtain an average to account for this.

6.4. Creating new greedy heuristics from XAI identified features

We will now build new heuristics solely based on a single feature from the earlier ML models. We
aim to see how powerful these features are when taking decisions on their own.

10 We note that greedy-sotd presented in (Dolzmann et al., 2004) is not greedy in the sense of this paper because it makes
a decision based on all the possible single projections for the next step (still less than the original sotd which computed all
full projections).
18

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Table 8
Evaluation of the existing heuristics to choose the variable orderings for
CAD. In bold, the best measure of the metric out of all the heuristics. Note
that after the double line, heuristics are not.

Name Accuracy Total time Markup # Completed

gmods 0.563 7192.2 0.212 982.6
Brown 0.553 7842.6 0.278 968.9
mods 0.639 8137 0.127 979
random 0.167 20797.3 4.034 262.5

free-mods 0.639 6637 0.566 990
virtual-best 1 4822.7 0 1019

The explainability analysis in Section 5 found sum(max(vi(S))) to be the most impactful feature.
A greedy heuristic SumMaxV based on this feature will select the variable for which this feature
is minimal for each projection (and in the case of a tie one of the tied variables will be chosen
randomly).

Consider for example the set S3 = {x1x2x3 − 1, x2
1 − x2

2x3}; then SumMaxV will work as follows.
First, the feature will be computed for each variable:

sum(max(v1(S3))) = sum([1,2]) = 3,

sum(max(v2(S3))) = sum([1,2]) = 3,

sum(max(v3(S3))) = sum([1,1]) = 2.

So x3 is projected first because it has the minimal value. The Lazard projection (McCallum and Hong,
2016) of S3 with respect to x3 gives {x3

1x2 −x2
2, x1x2, x2

2, x
2
1}. Factorizing and removing repeated factors

gives S2 = {x3
1 − x2, x1, x2} and again we compute this feature for each of the remaining variables:

sum(max(v1(S2))) = sum([3,1,0]) = 4 and,

sum(max(v2(S2))) = sum([1,0,1]) = 2.

So x2 is projected next because it has the minimal value. Thus heuristic SumMaxV chooses the order-
ing x3 � x2 � x1.

6.5. Performance of new single feature heuristics

We now evaluate the new heuristics based upon the features that ranked in the top six in
Table 7 (selected as discussed at the end of Section 5.2). AvgAvgSgV is based upon feature
avg(avg(sg(vi(S)))), SumMaxSV is based upon sum(max(svi(S))) and so on. The results are shown
in Table 9.

It is not a coincidence that the statistics for SumMaxV in Table 9 are the same as for gmods in
Table 8: gmods can be viewed as single feature heuristic based on sum(max(vi(S))).

The table shows there are two heuristics features that stand out: SumMaxV (gmods) and Av-
gAvgV. These achieve similar results, and to choose the best feature would depend on the metric
used: neither dominates the other.

6.6. New heuristics of triples of features identified by SHAP

We have now seen a number of single-feature heuristics doing well, without a clear winner. We
note that even the best of these (gmods) still relies on a random tie-breaker for 25% of the problem
instances, indicating it does not alone have access to enough information. So we will next combine
these single features into triples, using subsequent ones as tie-breakers. This approach is the same as
that used by the heuristic of Brown (2004). This should give a more informed choice than selecting a
random variable and is still certainly at a human level in size and complexity.
19

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Table 9
Evaluation metrics for the new heuristics to choose the variable order-
ings for CAD. In bold, the best measure of the metric out of all the
heuristics.

Name Accuracy Total time Markup # Completed

SumMaxV 0.563 7192.2 0.212 982.6

AvgAvgV 0.544 7138.7 0.224 983.5

SumSumV 0.549 7524.8 0.261 975.3

AvgAvgSgV 0.535 8682.6 0.559 956.3

SumSgSumV 0.45 10836.7 1.223 922.5

SumMaxSV 0.509 8771.7 0.563 956.5

Table 10
Evaluation metrics for the different heuristics to choose the vari-
able orderings for CAD. In bold, the best measure of the metric
out of all the heuristics. T1=SumMaxV>AvgAvgV>SumSumV and
T2=SumMaxV>SumSumSgV>SumSumV.

Name Accuracy Total time Markup # Completed

Brown 0.553 7842.6 0.278 968.9

T1 0.567 6896.3 0.193 985.7

T2 0.583 6896.7 0.188 984.8

Fig. 7. Survival plot for best-existing heuristics and new heuristics proposed in the problems that take more than 30 seconds
for all the orderings.

We will denote these heuristics based on multiple features by concatenating their names with a >,
where smaller indicates that it is used as a tie-breaker for the bigger features. Following this notation
the Brown heuristic would be denoted as MaxMaxV>MaxMaxSV>SumSumSgV.

There are 120 possible ordered triples that can be created from the top six features of Table 7.
For each we create a heuristic that chooses the variable that minimises the first feature, breaking ties
using the second feature and the third if necessary, and finally breaking ties by choosing a random
variable if there is a tie for all three features.

Performance statistics for the two triples that are best in one of the metrics are given in Table 10,
along with Brown that makes choices with a similar quantity of information.

Table 10 shows that the heuristic T1=SumMaxV>AvgAvgV>SumSumV wins in two of the four
metrics: total time and the number of problems completed within the time limit. T1 relies on the
random tie-breaker for only 5% of the problem instances, far less than any of the single feature heuris-
20

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
tics, as expected. Note that this heuristic is created from the top three features XAI suggested features,
in the order they appear in the voting system.

• sum(max(vi(S))), (i.e. variable with the lowest degree in the product of the polynomials); break-
ing ties with

• avg(avg(vi(S))), (i.e. variable with the lowest average of average degree in the polynomials);
breaking ties with

• sum(sum(vi(S))), (i.e. variable with the lowest sum of all its degrees).

This triple also outperforms all the singleton heuristics, and its performance gets really close to the
performance of the hypothetical heuristic free-gmods, shown in Table 8.

In Fig. 7 we give a survival plot comparing the triple T1 to the prior state-of-the-art and the virtual
best. We do this just for the hardest problems in the dataset (those taking more than 30 seconds in
all orderings) to allow for a clearer visualisation of the differences. The figure shows the leap that
existed between the prior state-of-the-art and the best possible in theory, and that the new XAI
informed triple bridges a good deal of that gap.

7. Conclusions

7.1. Summary

In this paper, we have devised a new state-of-the-art human-level heuristic for choosing a CAD
variable ordering, at least in three variable problems. Previous approaches to the problem were of
two types: either an expert handpicking features to create a human-designed heuristic; or an ML
model computing with many features under the hood. We presented an intermediate approach where
we start with the ML model but then use XAI to select important features, which may then be used
later independently of any ML technology.

We note that SHAP was able to find the feature identified recently by del Río and England (2022)
that was used to form the prior state-of-the-art heuristic; and identified also the tools of the heuristic
in Brown (2004). But it also found an important feature not previously considered by experts.

7.2. Future work

There is of course scope for future work. Using multiple features clearly improved the results, and
there are certainly others ways we could consider combining them. Perhaps this combination itself
could also be ML informed? It would also be interesting to explore alternative explainable AI methods,
especially ML models that are inherently explainable, rather than the post-hoc explainability analysis
of SHAP. We also acknowledge the need to experiment with other datasets including problems with
more variables.

The experiments presented in this paper are for selecting CAD variable ordering. However, the
methodology could be applied almost directly to variable ordering choices for other algorithms, and
could be adapted to many algorithm optimisation problems in symbolic computation and beyond.
We have shown that ML has a role to play in symbolic computation, even for developers who prefer
not to include a reliance upon it in their final code. It can be used as a tool to guide and develop
algorithms at a human level. We thus hope and expect to see other applications of XAI to inform
decisions in CASs and optimise symbolic computation algorithms in the coming years.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.
21

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Data availability

The code and data supporting the research in this paper are freely available from Zenodo: https://
doi .org /10 .5281 /zenodo .8229298.

Acknowledgements

Matthew England acknowledges the support of UKRI EPSRC Grant EP/T015748/1, “Pushing Back
the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition” (DEWCAD). Tereso del Río and Lynn
Pickering acknowledge the Coventry University Research Excellence grant that allowed them to work
together in person on this paper. Lynn Pickering acknowledges the support of the Rindsberg Fellow-
ship from the University of Cincinnati, the Ohio Space Grant Consortium Research Fellowship, and a
University of Cincinnati International Study Abroad Scholarship that allowed her to spend a semester
at Coventry University.

We thank AmirHosein Sadeghimanesh for helpful feedback, and the anonymous reviewers whose
comments greatly improved this paper.

References

Barrett, C., Fontaine, P., Tinelli, C., 2016. The satisfiability modulo theories library (SMT-LIB). Online resource. https://smtlib .cs .
uiowa .edu/.

Bernal, E.A., Hauenstein, J.D., Mehta, D., Regan, M.H., Tang, T., 2023. Machine learning the real discriminant locus. J. Symb.
Comput. 115, 409–426. https://doi .org /10 .1016 /j .jsc .2022 .08 .001.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer. https://link.springer.com /book /9780387310732.
Bradford, R., Davenport, J.H., England, M., Errami, H., Gerdt, V., Grigoriev, D., Hoyt, C., Košta, M., Radulescu, O., Sturm, T., Weber,

A., 2020. Identifying the parametric occurrence of multiple steady states for some biological networks. J. Symb. Comput. 98,
84–119. https://doi .org /10 .1016 /j .jsc .2019 .07.008.

Bradford, R., Davenport, J.H., England, M., Wilson, D., 2013. Optimising problem formulations for cylindrical algebraic decompo-
sition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (Eds.), Intelligent Computer Mathematics. In: Lecture
Notes in Computer Science, vol. 7961. Springer Berlin Heidelberg, pp. 19–34. https://doi .org /10 .1007 /978 -3 -642 -39320 -4 _2.

Brown, C.W., 2004. Companion to the tutorial “Cylindrical algebraic decomposition” presented at ISSAC ’04. https://www.usna .
edu /Users /cs /wcbrown /research /ISSAC04 /handout .pdf.

Brown, C.W., 2015. Open non-uniform cylindrical algebraic decompositions. In: Proceedings of the 2015 International Sympo-
sium on Symbolic and Algebraic Computation. ACM, pp. 85–92. https://doi .org /10 .1145 /2755996 .2756654.

Brown, C.W., Davenport, J.H., 2007. The complexity of quantifier elimination and cylindrical algebraic decomposition. In:
Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation. ACM, pp. 54–60. https://
doi .org /10 .1145 /1277548 .1277557.

Buchberger, B., 2006. Bruno Buchberger’s PhD thesis (1965): an algorithm for finding the basis elements of the residue class
ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 475–511. https://doi .org /10 .1016 /j .jsc .2005 .09 .007.

Carette, J., 2004. Understanding expression simplification. In: Proceedings of the 2004 International Symposium on Symbolic
and Algebraic Computation. ACM, pp. 72–79. https://doi .org /10 .1145 /1005285 .1005298.

Chen, C., Moreno Maza, M., Xia, B., Yang, L., 2009. Computing cylindrical algebraic decomposition via triangular decomposition.
In: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation. ACM, pp. 95–102. https://
doi .org /10 .1145 /1576702 .1576718.

Chen, C., Zhu, Z., Chi, H., 2020. Variable ordering selection for cylindrical algebraic decomposition with artificial neural networks.
In: Bigatti, A., Carette, J., Davenport, J.H., Joswig, M., de Wolff, T. (Eds.), Mathematical Software – ICMS 2020. Springer
International Publishing, pp. 281–291. https://doi .org /10 .1007 /978 -3 -030 -52200 -1 _28.

Collins, G.E., 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Lect. Notes Comput.
Sci. 33, 134–183. https://doi .org /10 .1007 /3 -540 -07407 -4 _17.

Collins, G.E., Hong, H., 1991. Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299–328.
https://doi .org /10 .1016 /S0747 -7171(08)80152 -6.

Davenport, J.H., Heintz, J., 1988. Real quantifier elimination is doubly exponential. J. Symb. Comput. 5, 29–35. https://doi .org /10 .
1016 /S0747 -7171(88)80004 -X.

Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A.,
Lackenby, M., Williamson, G., Hassabis, D., Kohli, P., 2021. Advancing mathematics by guiding human intuition with AI.
Nature 600, 70–74. https://doi .org /10 .1038 /s41586 -021 -04086 -x.

Dolzmann, A., Seidl, A., Sturm, T., 2004. Efficient projection orders for CAD. In: Proceedings of the 2004 International Symposium
on Symbolic and Algebraic Computation. ACM, pp. 111–118. https://doi .org /10 .1145 /1005285 .1005303.

Du, M., Liu, N., Hu, X., 2019. Techniques for interpretable machine learning. Commun. ACM 63, 68–77. https://doi .org /10 .1145 /
3359786.

England, M., Bradford, R., Davenport, J.H., 2020. Cylindrical algebraic decomposition with equational constraints. J. Symb. Com-
put. 100, 38–71. https://doi .org /10 .1016 /j .jsc .2019 .07.019.
22

https://doi.org/10.5281/zenodo.8229298
https://doi.org/10.5281/zenodo.8229298
https://smtlib.cs.uiowa.edu/
https://smtlib.cs.uiowa.edu/
https://doi.org/10.1016/j.jsc.2022.08.001
https://link.springer.com/book/9780387310732
https://doi.org/10.1016/j.jsc.2019.07.008
https://doi.org/10.1007/978-3-642-39320-4_2
https://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1145/1005285.1005298
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1007/978-3-030-52200-1_28
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/3359786
https://doi.org/10.1145/3359786
https://doi.org/10.1016/j.jsc.2019.07.019

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
England, M., Florescu, D., 2019. Comparing machine learning models to choose the variable ordering for cylindrical algebraic
decomposition. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti, C.C. (Eds.), Intelligent Computer Mathematics. Springer
International Publishing, pp. 93–108. https://doi .org /10 .1007 /978 -3 -030 -23250 -4 _7.

Florescu, D., England, M., 2019. Algorithmically generating new algebraic features of polynomial systems for machine learning.
In: Abbott, J., Griggio, A. (Eds.), Proceedings of the 4th Workshop on Satisfiability Checking and Symbolic Computation (SC2

2019), p. 12. http://ceur-ws .org /Vol -2460/.
Florescu, D., England, M., 2020a. Improved cross-validation for classifiers that make algorithmic choices to minimise runtime

without compromising output correctness. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (Eds.), Mathematical Aspects
of Computer and Information Sciences (Proc. MACIS ’19). Springer International Publishing, pp. 341–356. https://doi .org /10 .
1007 /978 -3 -030 -43120 -4 _27.

Florescu, D., England, M., 2020b. A machine learning based software pipeline to pick the variable ordering for algorithms with
polynomial inputs. In: Bigatti, A., Carette, J., Davenport, J.H., Joswig, M., de Wolff, T. (Eds.), Mathematical Software – ICMS
2020. Springer International Publishing, pp. 302–322. https://doi .org /10 .1007 /978 -3 -030 -52200 -1 _30.

Fraenkel, J., Grofman, B., 2014. The Borda Count and its real-world alternatives: comparing scoring rules in Nauru and Slovenia.
Aust. J. Polit. Sci. 49, 186–205. https://doi .org /10 .1080 /10361146 .2014 .900530.

Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C., 1991. One sugar cube, please; or selection strategies in the Buchberger
algorithm. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. ACM, pp. 49–54.
https://doi .org /10 .1145 /120694 .120701.

Gunning, D., Aha, D., 2019. DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40 (2), 44–58. https://doi .org /10 .
1609 /aimag .v40i2 .2850.

Hauenstein, J.D., He, Y.H., Kotsireas, I., Mehta, D., Tang, T., 2023. Special issue on algebraic geometry and machine learning. J.
Symb. Comput. 118, 93–94. https://doi .org /10 .1016 /j .jsc .2022 .10 .003.

He, Y.H., 2022. Machine-learning mathematical structures. Int. J. Data Sci. Math. Sci. 1, 1–25. https://doi .org /10 .1142 /
S2810939222500010.

Herm, L.V., Heinrich, K., Wanner, J., Janiesch, C., 2022. Stop ordering machine learning algorithms by their explainability! A user-
centered investigation of performance and explainability. Int. J. Inf. Manag. 69, 102538. https://doi .org /10 .1016 /j .ijinfomgt .
2022 .102538.

Huang, Z., England, M., Davenport, J.H., Paulson, L., 2016. Using machine learning to decide when to precondition cylindrical
algebraic decomposition with Groebner bases. In: 18th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC ’16). IEEE, pp. 45–52. https://doi .org /10 .1109 /SYNASC .2016 .020.

Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L., Bridge, J., 2014. Applying machine learning to the problem of
choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H.,
Sexton, A.P., Sojka, P., Urban, J. (Eds.), Intelligent Computer Mathematics. In: Lecture Notes in Artificial Intelligence, vol. 8543.
Springer International, pp. 92–107. https://doi .org /10 .1007 /978 -3 -319 -08434 -3 _8.

Huang, Z., England, M., Wilson, D.J., Bridge, J., Davenport, J.H., Paulson, L.C., 2019. Using machine learning to improve cylindrical
algebraic decomposition. Math. Comput. Sci. 13, 461–488. https://doi .org /10 .1007 /s11786 -019 -00394 -8.

Jovanovic, D., de Moura, L., 2012. Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (Eds.), Automated Rea-
soning: 6th International Joint Conference (IJCAR). In: Lecture Notes in Computer Science, vol. 7364. Springer, pp. 339–354.
https://doi .org /10 .1007 /978 -3 -642 -31365 -3 _27.

Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H., 2016. Efficient subformula orders for real quantifier elimination of non-prenex
formulas. In: Kotsireas, S.I., Rump, M.S., Yap, K.C. (Eds.), Mathematical Aspects of Computer and Information Sciences (MACIS
’15). Springer International Publishing, pp. 236–251. https://doi .org /10 .1007 /978 -3 -319 -32859 -1 _21.

Kremer, G., Ábrahám, E., 2020. Fully incremental CAD. J. Symb. Comput. 100, 11–37. https://doi .org /10 .1016 /j .jsc .2019 .07.018.
Kuipers, J., Ueda, T., Vermaseren, J.A.M., 2015. Code optimization in FORM. Comput. Phys. Commun. 189, 1–19. https://doi .org /

10 .1016 /j .cpc .2014 .08 .008.
Lample, G., Charton, D., 2020. Deep learning for symbolic mathematics. In: Mohamed, S., White, M., Cho, K., Song, D.

(Eds.), Eighth International Conference on Learning Representations (ICLR 2020), p. 24. https://iclr.cc /virtual _2020 /poster _
S1eZYeHFDS .html.

Lundberg, S., 2022. SHAP v1.40.0 (GitHub). https://github .com /slundberg /shap.
Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., Lee, S.I., 2020. From

local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 2522–5839. https://doi .org /10 .
1038 /s42256 -019 -0138 -9.

Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, pp. 4768–4777. https://
dl .acm .org /doi /10 .5555 /3295222 .3295230.

Manubens, M., Moroz, G., Chablat, D., Rouillier, F., Wenger, P., 2012. Cusp points in the parameter space of degenerate 3-RPR
planar parallel manipulators. J. Mech. Robot. 4, 041003. https://doi .org /10 .1115 /1.4006921.

McCallum, S., Hong, H., 2016. On using Lazard’s projection in cad construction. J. Symb. Comput. 72, 65–81. https://doi .org /10 .
1016 /j .jsc .2015 .02 .001.

McCallum, S., Parusińiski, A., Paunescu, L., 2019. Validity proof of Lazard’s method for CAD construction. J. Symb. Comput. 92,
52–69. https://doi .org /10 .1016 /j .jsc .2017.12 .002.

Molnar, C., 2023. Interpretable machine learning. https://christophm .github .io /interpretable -ml -book/.
Mulligan, C.B., Davenport, J.H., England, M., 2018. TheoryGuru: a Mathematica package to apply quantifier elimination technol-

ogy to economics. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (Eds.), Mathematical Software – Proc. ICMS 2018.
Springer International Publishing, pp. 369–378. https://doi .org /10 .1007 /978 -3 -319 -96418 -8 _44.
23

https://doi.org/10.1007/978-3-030-23250-4_7
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1007/978-3-030-52200-1_30
https://doi.org/10.1080/10361146.2014.900530
https://doi.org/10.1145/120694.120701
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1016/j.jsc.2022.10.003
https://doi.org/10.1142/S2810939222500010
https://doi.org/10.1142/S2810939222500010
https://doi.org/10.1016/j.ijinfomgt.2022.102538
https://doi.org/10.1016/j.ijinfomgt.2022.102538
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-319-32859-1_21
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1016/j.cpc.2014.08.008
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://github.com/slundberg/shap
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.1115/1.4006921
https://doi.org/10.1016/j.jsc.2015.02.001
https://doi.org/10.1016/j.jsc.2015.02.001
https://doi.org/10.1016/j.jsc.2017.12.002
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-319-96418-8_44

L. Pickering, T. del Río Almajano, M. England et al. Journal of Symbolic Computation 123 (2024) 102276
Paulson, L.C., 2012. Metitarski: past and future. In: Beringer, L., Felty, A. (Eds.), Interactive Theorem Proving. In: Lecture Notes in
Computer Science, vol. 7406. Springer, pp. 1–10. https://doi .org /10 .1007 /978 -3 -642 -32347 -8 _1.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in
Python. J. Mach. Learn. Res. 12, 2825–2830. http://www.jmlr.org /papers /v12 /pedregosa11a .html.

Peifer, D., Stillman, M., Halpern-Leistner, D., 2020. Learning selection strategies in Buchberger’s algorithm. In: Daumé III, H.,
Singh, A. (Eds.), Proceedings of the 37th International Conference on Machine Learning (ICML 2020). PMLR, pp. 7575–7585.
https://proceedings .mlr.press /v119 /peifer20a .html.

Platzer, A., Quesel, J., Rümmer, P., 2009. Real world verification. In: Schmidt, R.A. (Ed.), Automated Deduction (CADE-22). In:
Lecture Notes in Computer Science, vol. 5663. Springer Berlin Heidelberg, pp. 485–501. https://doi .org /10 .1007 /978 -3 -642 -
02959 -2 _35.

del Río, T., England, M., 2022. New heuristic to choose a cylindrical algebraic decomposition variable ordering motivated
by complexity analysis. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (Eds.), Computer Algebra in Scientific
Computing. In: Lecture Notes in Computer Science, vol. 13366. Springer International Publishing, pp. 300–317. https://
doi .org /10 .1007 /978 -3 -031 -14788 -3 _17.

del Rio, T., England, M., 2023. Data augmentation for mathematical objects. In: Ábrahám, E., Sturm, T. (Eds.), Proceedings of the
8th Workshop on Satisfiability Checking and Symbolic Computation (SC2 2023), pp. 29–38. http://ceur-ws .org /Vol -3455/.

Röst, G., Sadeghimanesh, A., 2021. Exotic bifurcations in three connected populations with Allee effect. Int. J. Bifurc. Chaos 31.
https://doi .org /10 .1142 /S0218127421502023.

Shapley, L.S., 1953. 17. A value for n-person games. In: Contributions to the Theory of Games (AM-28), vol. II, pp. 307–317.
https://doi .org /10 .1515 /9781400881970 -018.

Simpson, M.C., Yi, Q., Kalita, J., 2016. Automatic algorithm selection in computational software using machine learning. In: 15th
IEEE International Conference on Machine Learning and Applications (ICMLA 2016), pp. 355–360. https://doi .org /10 .1109 /
ICMLA.2016 .0064.

Strzeboński, A., 2006. Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41, 1021–1038. https://
doi .org /10 .1016 /j .jsc .2006 .06 .004.

Wilson, D., England, M., Bradford, R., Davenport, J.H., 2015. Using the distribution of cells by dimension in a cylindrical alge-
braic decomposition. In: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2014, pp. 53–60. https://doi .org /10 .1109 /SYNASC .2014 .15.
24

https://doi.org/10.1007/978-3-642-32347-8_1
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://proceedings.mlr.press/v119/peifer20a.html
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/978-3-031-14788-3_17
https://doi.org/10.1007/978-3-031-14788-3_17
http://ceur-ws.org/Vol-3455/
https://doi.org/10.1142/S0218127421502023
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1109/ICMLA.2016.0064
https://doi.org/10.1109/ICMLA.2016.0064
https://doi.org/10.1016/j.jsc.2006.06.004
https://doi.org/10.1016/j.jsc.2006.06.004
https://doi.org/10.1109/SYNASC.2014.15

	Explainable AI Insights for Symbolic Computation: A case study on selecting the variable ordering for cylindrical algebraic...
	1 Introduction
	1.1 Machine learning and mathematics
	1.2 Safe use of machine learning in computer algebra systems
	1.3 Explainable artificial intelligence
	1.4 Contributions and plan of the paper

	2 Cylindrical algebraic decomposition
	2.1 Cylindrical algebraic decomposition
	2.2 CAD variable ordering
	2.3 Prior human-designed heuristics for choosing the ordering
	2.4 Prior AI-designed heuristics for choosing the ordering

	3 Explaining machine learning models
	3.1 SHAP
	3.2 SHAP waterfall plots
	3.3 Multi-class SHAP

	4 SHAP applied to ML for CAD variable ordering
	4.1 Methodology
	4.1.1 Dataset
	4.1.2 SHAP
	4.1.3 Features

	4.2 SHAP results
	4.2.1 Local SHAP analysis
	4.2.2 Global SHAP analysis
	4.2.3 Features in human-designed heuristics

	5 Post SHAP analysis to identify the most relevant features
	5.1 Merging features that generate the same heuristic
	5.2 Creating a unified ranking

	6 New human-level heuristics motivated by XAI
	6.1 Benchmarks
	6.2 Evaluation metrics
	6.3 Existing heuristics
	6.4 Creating new greedy heuristics from XAI identified features
	6.5 Performance of new single feature heuristics
	6.6 New heuristics of triples of features identified by SHAP

	7 Conclusions
	7.1 Summary
	7.2 Future work

	Declaration of competing interest
	Data availability
	Acknowledgements
	References

