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CAD via Projection and Lifting (V3.17)
Matthew England (University of Bath)
11th February 2015

restart: kernelopts(opaquemodules=false):

Digits:=20:

This file is an introduction to the Maple package "ProjectionCAD".  (This iteration of the code is 
substantially different to the last, hence labeled V3).
The code uses and mimics work in the RegularChains library.  Hence it is useful (but not necessary) to 
load this.
with(RegularChains): with(SemiAlgebraicSetTools):

The code is designed for and has been tested in Maple 18 (and the RegularChains Library this ships 
with).  
It is very likely to work with later versions of Maple, as well as Maple 15-17, but has not been tested 
there.  
It will not work with Maple 14 or earlier as the RegularChains commands used were not present.  
However, if you have such an earlier Maple you could try installing the RegularChains Library from 
www.regularchains.org.
read("ProjectionCAD.mpl"):
with(ProjectionCAD);

"This is V3.18 of the ProjectionCAD module from 11th February 2015, designed and tested for 

use in Maple 18."

CADDist, CADFull, CADGenerateStack, CADLifting, CADNormDist, CADProjection,

ECCAD, ECCADFormulations, ECCADHeuristic, ECCADProjFactors, ECCADProjOp,

LCAD, LCADDisplay, LCADRecursive, LTTICAD, LVCAD, LVTTICAD, NumCellsInCAD,

NumCellsInPiecewiseCAD, TTICAD, TTICADDist, TTICADFormulations,

TTICADHeuristic, TTICADNormDist, TTICADProjFactors, TTICADProjOp,

TTICADQFFFormulations, TTICADQFFHeuristic, TTICADResCAD, TTICADResCADSet,

VCAD, VCADLiftOverLowCAD, VTTICAD, VariableOrderingHeuristic,

VariableOrderings, ndrr, sotd

The code in this module is an implementation of algorithms for constructing various CADs via 
projection and lifting. This includes CADs that are: sign-invariant, order-invariant, sign-invariant over 
an equational constraint and truth-table invariant.  There are also tools for considering the different 
formulations for these algorithms and heuristics for making these choices.  The latest addition is code to
produce sub-CADs containing cells of a given dimension or lying on a given variety.  

We note that there is already a command in Maple to produce CADs:
RegularChains:-SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose
However, this uses a different approach (triangular decomposition).  Indeed, we named our package to 
contrast with it.

We introduce the main commands of our module in the sections below.  Note that details for an 
individual command can be obtained using Describe.  For example:
Describe(NumCellsInPiecewiseCAD);

# NumCellsInPiecewiseCAD: Calculate the number of cells in a CAD
given in the 
# piecewise output format. Note that this command will not work 



for sub-CADs.
# Input: A CAD in piecewise format. This could be output from 
either this 
# module or the Regular Chains implementation.
# Output: The number of cells in the CAD.
NumCellsInPiecewiseCAD( pwcad::piecewise, $ ) :: posint

CONTENTS:
0. Note on known bug in Maple 18.
1. Sign-invariant CADs.
2. CAD output formats.
3. ExaminingFailure.
4. Order-invariant CADs.
5. Generating stacks and returning induced CADs.
6. CADs with equational constraint.
7. Truth-table invariant CAD.
8. The ResCAD algorithm for TTICAD.
9. TTICAD formulations and heuristics.
10. Projection polynomials vs lifiting polynomials.
11. Choosing a variable ordering.
12. Greedy algorithms for variable orderings choices.
13. Layered sub-CADs
14. Variety sub-CADs.
15. Avoiding theoretical failure with sub-CADs.
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0. Note on known bug in Maple 18.

There is a known bug in Maple 18 which affects ProjectionCAD.  
The bug concerns the RootOf(p,a,b) command.  This represents algebraic numbers as the root of a 
polynomial p between rational numbers a<b.
In Maple 18 if we have a<b but evalf(a)=evalf(b) under the current precision we obtain an error 
message.  The error can be avoided by increasing the precision.
Example:
restart: with(RegularChains): with(SemiAlgebraicSetTools): read
("ProjectionCAD.mpl"): with(ProjectionCAD):

"This is V3.17 of the ProjectionCAD module from 10th February 2015, designed and tested 

for use in Maple 18."

f1:=x^2+y^2+z^2-1: g1:=x*y*z-1/4:
f2:=x^2-y^2-z^2-1: g2:=(x-4)*(y-1)-1/4+z:
PHI:=[ [f1,[g1]], [f2,[g2]] ]:

Digits;
ord:=[z,y,x]: TTICAD( PHI, ord): ord,nops(%);

10

Error, (in RootOf) the input range -189907187703/137438953472 
.. -379814375405/274877906944 is invalid

z, y, x , 3

Digits:=20;
ord:=[z,y,x]: TTICAD( PHI, ord): ord,nops(%);

Digits d 20

z, y, x , 463

Digits:=10:

The bug is not present in prior versions of Maple.
The bug has been reported to Maplesoft, should not be present in future versions of Maple (and is 
not present in the Maple 2015 Beta).
In the remainder of this worksheet the Digits are increased when required to avoid the bug.
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1. Sign-invariant CADs

Given polynomials and a variable ordering CADFull will construct a sign-invariant CAD using 
either Collins or McCallum projection (default is McCallum) and the corresponding lifting 
algorithm.

For example:
f:=y^3+y^2+y*x^2-1;

f d y x
2
Cy

3
Cy

2
K1

CADFull( {f}, [y,x], method=Collins): nops(%);
CADFull( {f}, [y,x], method=McCallum): nops(%);

15

3

The projection and lifting steps may be performed separately if desired.  The projection factors may 
be calculated using:
psetC:=CADProjection( {f}, [y,x], method=Collins );
psetM:=CADProjection( {f}, [y,x], method=McCallum ); 

psetC d x
2
C1, 3 x

2
K1, 4 x

4
K5 x

2
C23, y

3
Cy x

2
Cy

2
K1

psetM d x
2
C1, 4 x

4
K5 x

2
C23, y

3
Cy x

2
Cy

2
K1

Then we can lift with respect to these using:
CADLifting( psetC, [y,x], method=Collins): nops(%);

15

Note that if you were to lift a set of projections polynomials from one algorithm with the other then 
the output is no longer guaranteed.
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2. CAD output formats

There are currently four style of output format for CADs: list, listwithrep, rootof and piecewise.   
The default is list, which gives a list of cells, each containing an index and a samplepoint.  
Note that this is the same format as RegularChains:-SemiAlgebraicSetTools:-
CylindricalAlgebraicDecompose with output=list.
f:=y^3+y^2+y*x^2-1: cadl:=CADFull( {f}, [y,x], method=McCallum,
output=list ); nops(%);

cadl d 1, 1 , regular_chain, 0, 0 , K1, K1 , 1, 2 , regular_chain, 0, 0 ,

3

4
, 1 , 1, 3 , regular_chain, 0, 0 , 2, 2

3

The choice output=rootof will give a list of cells, each represented by conditions on the variables.
Note that this is the same format as RegularChains:-SemiAlgebraicSetTools:-
CylindricalAlgebraicDecompose with output=rootof.
cadr:=CADFull( {f}, [y,x], method=McCallum, output=rootof ); 
nops(%);

cadrd x = x, y !RootOf _Z
3
C_Z x

2
C_Z

2
K1, index = real1 , x = x, y = RootOf _Z

3

C_Z x
2
C_Z

2
K1, index = real1 , x = x, RootOf _Z

3
C_Z x

2
C_Z

2
K1, index

= real
1

! y

3

The choice output=listwithrep will give a list of cells which contain all the information from the 
previous two formats.
cadlwr:=CADFull( {f}, [y,x], method=McCallum, output=
listwithrep ); nops(%);

cadlwr d 1, 1 , x = x, y !RootOf _Z
3
C_Z x

2
C_Z

2
K1, index = real1 ,

regular_chain, 0, 0 , K1, K1 , 1, 2 , x = x, y = RootOf _Z
3
C_Z x

2
C_Z

2

K1, index = real1 , regular_chain, 0, 0 ,
3

4
, 1 , 1, 3 , x = x, RootOf _Z

3

C_Z x
2
C_Z

2
K1, index = real1 ! y , regular_chain, 0, 0 , 2, 2

3

The choice output=piecewise will show the CAD arranged cylindrically using Maple's piecewise 
construction.
cadp:=CADFull( {f}, [y,x], method=McCallum, output=piecewise );
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cadp d

regular_chain, 0, 0 , K1, K1 y !RootOf _Z
3
C_Z x

2
C_Z

2
K1, index = real1

regular_chain, 0, 0 ,
3

4
, 1 y = RootOf _Z

3
C_Z x

2
C_Z

2
K1, index = real

1

regular_chain, 0, 0 , 2, 2 RootOf _Z
3
C_Z x

2
C_Z

2
K1, index = real1 ! y

This format is comparable with RegularChains:-SemiAlgebraicSetTools:-
CylindricalAlgebraicDecompose with output=piecewise, however, here radicals are used instead of 
RootOf constructions for easier examples.
CADFull( {x^2+y^2-1}, [y,x], method=McCallum, output=piecewise 
); 

regular_chain, K2, K2 , 0, 0 x !K1

regular_chain, K1, K1 , K1, K1 y ! 0

regular_chain, K1, K1 , 0, 0 y = 0

regular_chain, K1, K1 , 1, 1 0 ! y

x =K1

regular_chain, 0, 0 , K2, K2 y !K Kx
2
C1

regular_chain, 0, 0 , K1, K1 y =K Kx
2
C1

regular_chain, 0, 0 , 0, 0 K Kx
2
C1 ! y ! Kx

2
C1

regular_chain, 0, 0 , 1, 1 y = Kx
2
C1

regular_chain, 0, 0 , 2, 2 Kx
2
C1 ! y

K1 ! x ! 1

regular_chain, 1, 1 , K1, K1 y ! 0

regular_chain, 1, 1 , 0, 0 y = 0

regular_chain, 1, 1 , 1, 1 0 ! y

x = 1

regular_chain, 2, 2 , 0, 0 1 ! x

Note that we cannot measure the number of cells in a piecewise cad using the nops functions.  Use 
the function CADNumCellsInPiecewise instead
nops(cadp); NumCellsInPiecewiseCAD(cadp);

6

3



(4.2)(4.2)

> > 

> > 

(4.1)(4.1)

> > 

(4.3)(4.3)

> > 

> > 

> > 

(4.4)(4.4)

3. Examing failure (userinfo levels)

Collins' algorithm will always succeed (given sufficient time and memory).
McCallum's algorithm can fail when the input polynomials are not well oriented.  

McCallum's algorithm has been adapted here to maximise success by guaranteeing only a sign-
invariant CAD (rather than order-invariant) as a final output.
Hence to give an example of failure we need at least 5-dimensions .
(This is because 2d is always OI, 3d can only fail on dim zero cell for which we have McCallum's 
delineating polynomial method and 4d can still be guaranteed sign-invariant.)
A trivial example of failure:
f:=a*e+b*d+c*e+d+e;

f d a eCb dCc eCdCe

CADFull( {f}, [a,b,c,d,e], method=McCallum  ): nops(%);
Warning, The input is not well-oriented (there is 
nullification on cell [1, 2, 2]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [2, 2, 1]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [3, 4, 2]).  The output cannot be 
guaranteed correct.

241

In this case the algorithm continued, but the warning implies that the output may be meaningless.  
We can change what happens in this situation with an optional argument.  
Using failure=warn gives the output above.  Using failure=err will generate an error message.  
Using failure=giveFAIL will return the boolean value FAIL.
CADFull( {f}, [a,b,c,d,e], method=McCallum, failure=err );

Error, (in PCAD_ProjCADLift) The input is not well-oriented 
(there is nullification on cell [1, 2, 2]).  The output cannot
be guaranteed correct.

CADFull( {f}, [a,b,c,d,e], method=McCallum, failure=giveFAIL );

FAIL

CADFull( {f}, [a,b,c,d,e], method=McCallum, failure=warn ):
Warning, The input is not well-oriented (there is 
nullification on cell [1, 2, 2]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [2, 2, 1]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [3, 4, 2]).  The output cannot be 
guaranteed correct.

The default is to warn if the output is guarenteed sign-invariant but not order invariant and to give 
FAIL otherwise.  Note that if you allow the algorithm to keep running in such cases it may get in an 
infinite loop.

Note that we can of course get a guaranteed correct output in all cases by using Collins:
CADFull( {f}, [a,b,c,d,e], method=Collins  ): nops(%);

241
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In this case the number of cells in Collins guaranteed SI CAD was the same as in the "failed" 
McCallum cad.  

UserInfo
We can get more information of the algorithm CADFull as it runs by changing the userinfo level of 
ProjectionCAD.
Level 1 is the default and gives no information other than errors and warnings.
Level 2 will also report on the progress of the algorithm as it runs and give details on reasons for 
failure.
Level 3 will also list the all the cells where nullification occurs and what happened because of it.  
There is also Level 4 which is rarely used.  It sometimes prints the polynomials in question.

Comparing user info levels
infolevel[ProjectionCAD]:=1:

CADFull( {f}, [a,b,c,d,e], method=McCallum  ):
Warning, The input is not well-oriented (there is 
nullification on cell [1, 2, 2]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [2, 2, 1]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [3, 4, 2]).  The output cannot be 
guaranteed correct.

infolevel[ProjectionCAD]:=2:

CADFull( {f}, [a,b,c,d,e], method=McCallum  ):
CADFull: produced set of 6 projection factors using the 
McCallum algorithm.
PCAD_ProjCADLift: produced CAD of [e] -space with 3 cells
PCAD_ProjCADLift: produced CAD of [d e] -space with 13 cells
PCAD_ProjCADLift: produced CAD of [c d e] -space with 33 
cells
Warning, The input is not well-oriented (there is 
nullification on cell [1, 2, 2]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [2, 2, 1]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [3, 4, 2]).  The output cannot be 
guaranteed correct.
PCAD_ProjCADLift: produced CAD of [b c d e] -space with 85 
cells
PCAD_ProjCADLift: produced CAD of [a b c d e] -space with 
241 cells

infolevel[ProjectionCAD]:=3:

CADFull( {f}, [a,b,c,d,e], method=McCallum  ):
CADFull: produced set of 6 projection factors using the 
McCallum algorithm.
PCAD_ProjCADLift: produced CAD of [e] -space with 3 cells
PCAD_ProjCADLift: produced CAD of [d e] -space with 13 cells
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 2]
PCAD_ProjCADLift: the nullified polynomial was discarded 
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since cell [2 2] is zero-dim and the minimal delineating 
polynomial is a constant.
PCAD_ProjCADLift: produced CAD of [c d e] -space with 33 
cells
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [1 2 2]
PCAD_ProjCADLift: there is nullification on cell [1 2 2] 
which has dim>0. Hence the CAD cannot be guaranteed sign-
invariant.
Warning, The input is not well-oriented (there is 
nullification on cell [1, 2, 2]).  The output cannot be 
guaranteed correct.
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 2 1]
PCAD_ProjCADLift: there is nullification on cell [2 2 1] 
which has dim>0. Hence the CAD cannot be guaranteed sign-
invariant.
Warning, The input is not well-oriented (there is 
nullification on cell [2, 2, 1]).  The output cannot be 
guaranteed correct.
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [3 4 2]
PCAD_ProjCADLift: there is nullification on cell [3 4 2] 
which has dim>0. Hence the CAD cannot be guaranteed sign-
invariant.
Warning, The input is not well-oriented (there is 
nullification on cell [3, 4, 2]).  The output cannot be 
guaranteed correct.
PCAD_ProjCADLift: produced CAD of [b c d e] -space with 85 
cells
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 1 1 2]
PCAD_ProjCADLift: the nullified polynomial was discarded 
since this is the final lift and only sign invariance is 
required.
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 2 1 1]
PCAD_ProjCADLift: the nullified polynomial was discarded 
since this is the final lift and only sign invariance is 
required.
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 3 1 2]
PCAD_ProjCADLift: the nullified polynomial was discarded 
since this is the final lift and only sign invariance is 
required.
PCAD_ProjCADLift: produced CAD of [a b c d e] -space with 
241 cells

Note that userinfo statements can significantly increase the time taken by algorithms and so 
shouldn't be used as default. 
infolevel[ProjectionCAD]:=1:

Note that similar userinfo statements are available for the algorithms ECCAD and TTICAD 
discussed later.
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4. Order invariant CADs

As discussed above, McCallum's CADW algorithm has been modified to maximise success - this is 
the default.
To run McCallum's original algorithm, guaranteeing order-invariance at the final step, (or failure), 
then the optional argument finalCAD=OI must be given.
Consider for example:
f:=x^2-z*y; 

f d x
2
Kz y

infolevel[CADFull]:=3:

cad1:=CADFull( {f}, [z,y,x], method=McCallum, output=
listwithrep  ): nops(%);

CADFull: produced set of 3 projection factors using the 
McCallum algorithm.
PCAD_ProjCADLift: produced CAD of [x] -space with 3 cells
PCAD_ProjCADLift: produced CAD of [y x] -space with 9 cells
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 2]
PCAD_ProjCADLift: the nullified polynomial was discarded since
this is the final lift and only sign invariance is required.
PCAD_ProjCADLift: produced CAD of [z y x] -space with 21 cells

21

cad2:=CADFull( {f}, [z,y,x], method=McCallum, finalCAD=OI, 
output=listwithrep  ): nops(%);

CADFull: produced set of 3 projection factors using the 
McCallum algorithm.
PCAD_ProjCADLift: produced CAD of [x] -space with 3 cells
PCAD_ProjCADLift: produced CAD of [y x] -space with 9 cells
PCAD_ProjCADLift: a projection polynomial was nullified on 
cell [2 2]
PCAD_ProjCADLift: cell [2 2] is zero-dim so a delineating 
polynomial was used.
PCAD_ProjCADLift: produced CAD of [z y x] -space with 23 cells

23

The first cad only has 21 cells, the second 23.  Look at the difference by considering the indices
convert( map(X->op(1,X), cad2),set) minus convert(map(X->op(1,
X),cad1),set);

2, 2, 2 , 2, 2, 3

select(X->op(1,X)=[2,2,1], cad2);
select(X->op(1,X)=[2,2,2], cad2);
select(X->op(1,X)=[2,2,3], cad2);

2, 2, 1 , x = 0, y = 0, z ! 0 , regular_chain, 0, 0 , 0, 0 , K1, K1

2, 2, 2 , x = 0, y = 0, z = 0 , regular_chain, 0, 0 , 0, 0 , 0, 0

2, 2, 3 , x = 0, y = 0, 0 ! z , regular_chain, 0, 0 , 0, 0 , 1, 1

select(X->op(1,X)=[2,2,1], cad1);

2, 2, 1 , x = 0, y = 0, z = z , regular_chain, 0, 0 , 0, 0 , 0, 0

The difference occurs when x=0 and y=0.  The first cad has just one cell here, with z free.  The 
second splits into three cells, with z<0,z=0 and z>0.
This is clearly needed for OI, since the order of f at zero is 2 while the order elsewhere is 1 or 0.
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By considering the user info statements we see why the outputs differ.  In both cases there is a 
nullification at the final lift.  
The first time this was ignored since it was the final lift and it was assumed only a sign-invariant cad
is required.
The second time this nullification was examined.  Since the cell in question was zero-dimensional 
we could use McCallum's delineating polynomial method to guarantee order invariance. 
infolevel[CADFull]:=1:
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5. Generate Stack and returning induced CADs

Part of the lifting algorithm involves building a stack over a cell such that a set of polynomials are 
delineable.  
To do this we use the internal RegularChains algorithms, RegularChains:-TRD_generate_stack.  
The polynomials passed to this algorithm should separate above the cell, hence to ensure 
correctness, we must first process our polynomials so that this is true.  
The user algorithm, CADGenerateStack first error checks, then does this pre-processing before 
finally passing to the TRD algorithm.  
Consider for example:
f:=z^2+y^2+x^2-1;
fullcad:=CADFull([f], [z,y,x], method=McCallum): nops(%);

f d x
2
Cy

2
Cz

2
K1

25

We can force CADFull to break halfway and return the cad of over (x,y)-space using the optional 
argument retcad=i
xycad:=CADFull([f], [z,y,x], method=McCallum, retcad=2): nops
(%);

13

Consider a cell of this cad.
cell:=xycad[3];

cell d 2, 2 , regular_chain, K1, K1 , 0, 0

If we generate the stack over this cell wrt to f, we get a list of new cells.
CADGenerateStack( cell, [f], [z,y,x] );

2, 2, 1 , regular_chain, K1, K1 , 0, 0 , K1, K1 , 2, 2, 2 , regular_chain,

K1, K1 , 0, 0 , 0, 0 , 2, 2, 3 , regular_chain, K1, K1 , 0, 0 , 1, 1

Note that each cell has an index which starts with the index of the previous cell.  

If we were to do this to all cells and put them together we get the full cad:
cad:=[]:
for i from 1 to 13 do 
  cad:=[op(cad), op(CADGenerateStack(xycad[i],[f],[z,y,x]))]:
od: nops(cad);

25

The two cads can be shown to be identical under inspection
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6. CADs with equational constraint

We can build CADs which are sign-invariant with respect to an equational constraint.  For example, 
consider
f:=x^2+y^2-1:
g:=(x-1/2)*(y-1/2):

and the problem f=0, g>0.  We can use ECCAD to build the CAD, the first argument is a designated
equational constraint and the second a list of any other constraints.
ECCAD( [f, [g]], [y,x]): nops(%);

43

Note that this CAD has less cells than a full sign-invariant CAD.
CADFull( [f,g], [y,x], method=McCallum): nops(%);

61

The algorithm follows McCallum's approach, using his reduced projection operator for the first 
projection.  Hence there is no method choice here.

The algorithm only makes use of one equational constraint.  If a problem has more than one then a 
choice must be made for which to designate.  
For example, consider the previous problem with the extra constraint h=0 where
h:=x*y-1:

Then we can can obtain a list of the different formulations using ECCADFormulations on a list of 
equational constraints and a list of non-equational constraints. 
Forms:=ECCADFormulations( [[f,h], [g]] );

Forms d y
2
Cx

2
K1, x yK1, x yK

1

2
 xK

1

2
 yC

1

4
, x yK1, y

2
Cx

2
K1, x y

K
1

2
 xK

1

2
 yC

1

4

In this example, a smaller CAD is obtained by designating h:
ECCAD( Forms[1], [y,x]): nops(%);
ECCAD( Forms[2], [y,x]): nops(%);

43

19

We can attempt to predict this using heuristics which examine the projection factors.  
The projection factors can be obtained using ECCADProjFactors, which takes the same input as 
ECCAD.
NOTE:  The projection polynomials are all those used in Projection.  However, unlike CADFull, 
they are not ALL used in Lifting.  In particular the non-equational constraints are not usually used in
the final lift.  
For more information on this see the section of projection / lifting polynomials below.
PF1:=ECCADProjFactors( Forms[1], [y,x]);
PF2:=ECCADProjFactors( Forms[2], [y,x]);

PF1 d xK1, xC1, xK
1

2
, yK

1

2
, x

2
K

3

4
, y xK1, x

4
Kx

2
C1, y

2
Cx

2
K1

PF2 d x, xK2, xK
1

2
, yK

1

2
, y xK1, x

4
Kx

2
C1, y

2
Cx

2
K1

We use the measures sotd (sum of total degree of all factors) and ndrr (number of distinct real roots 
of univariate factors) to estimate CAD complexity.
[sotd(PF1), sotd(PF2)];



> > 

> > 

> > 

(7.6)(7.6)

> > 

(7.10)(7.10)

(7.7)(7.7)

(7.8)(7.8)

(7.9)(7.9)

18, 16

[ndrr(PF1,x), ndrr(PF2,x)];

5, 3

We see that both predict designating h gives a less complicated CAD.

These steps can be performed by the command ECCADHeuristic (taking the input of 
ECCADFormulations and the variable ordering)
ECCADHeuristic( [[f,h], [g]], [y,x] );

y xK1, y
2
Cx

2
K1, xK

1

2
 yK

1

2

By default this picks the formulation with lowest ndrr, breaking ties with sotd (NS).  However, the 
reverse (SN), using one only (S, N), or a weighted average of the relative heuristics (W) are also 
available and specified by heuristic. 
ECCADHeuristic( [[f,h], [g]], [y,x], heuristic=S );

y xK1, y
2
Cx

2
K1, xK

1

2
 yK

1

2

ECCADHeuristic( [[f,h], [g]], [y,x], heuristic=W );

y xK1, y
2
Cx

2
K1, xK

1

2
 yK

1

2

See the TTICAD section for more details on heuristics commands.
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(8.5)(8.5)

> > 

> > 

> > 

(8.2)(8.2)

(8.4)(8.4)

> > 

(8.3)(8.3)

> > 

> > 

7. Truth table invariant CAD

The command TTICAD produces a CAD which is truth table invariant for a list of QFFs (quantifier 
free formulas).  Each QFF is represented by an equational constraint and a list of other constraints.  
For example, consider.
f1:=x^2+y^2-1:
g1:=x*y-1/4:
f2:=(x-4)^2+(y-1)^2-1:
g2:=(x-4)*(y-1)-1/4:

and the formula PHI = phi[1] \/ phi[2]
where
phi[1] = { f1=0, g1<0 }
phi[2] = { f2=0, g2<0 }.

We treat phi[2] and phi[2] as different QFFs and so use the input 
PHI:=[ [f1,[g1]], [f2,[g2]] ]:

Then we find the TTICAD with respect to a given variable ordering
TTICAD( PHI, [y,x] ): nops(%);

105

Compare this to a sign-invariant CAD:
CADFull( [f1,f2,g1,g2], [y,x], method=McCallum): nops(%);

317

or the CAD that could be constructed with an implicit equational constraint
ECCAD( [f1*f2, [f1,g1,f2,g2]], [y,x] ): nops(%);

145

We can use the retcad option to see the difference in the induced 1d cads
CADFull( [f1,f2,g1,g2], [y,x], method=McCallum, retcad=1): nops
(%);
ECCAD( [f1*f2, [f1,g1,f2,g2]], [y,x], retcad=1 ): nops(%);
TTICAD( PHI, [y,x], retcad=1 ): nops(%);

41

33

25

We see that a small difference in cells (41-25=16) is magnified to a larger difference (317-105-212) 
after lifting.

We can see the set of projection factors produced using the command TTICADProjFactors on 
TTICAD input.  Note that these are the polynomials used in the projection but they may not all be 
used for lifting (see Section 10).
P:=TTICADProjFactors( PHI, [y,x]);

P d xK5, xK3, xK1, xC1, y xK
1

4
, x

2
K4 xC

285

68
, x

4
Kx

2
C

1

16
, y xKxK4 y

C
15

4
, x

4
K16 x

3
C95 x

2
K248 xC

3841

16
, y

2
Cx

2
K1, y

2
Cx

2
K2 yK8 xC16

TTICAD offers the same output formats as a sign-invariant CAD, discussed above.
TTICAD( [ [x+1,[x,x^2]], [x-1,[x+2*x]] ], [x], output=
piecewise); NumCellsInPiecewiseCAD(%);



> > 

(8.9)(8.9)

(8.7)(8.7)

(8.6)(8.6)

(8.8)(8.8)

> > 

> > 

regular_chain, K2, K2 x !K1

regular_chain, K1, K1 x =K1

regular_chain, 0, 0 K1 ! x ! 1

regular_chain, 1, 1 x = 1

regular_chain, 2, 2 1 ! x

5

When input is given containing only one variable then a sign-invariant CAD is created for the 
equational constraints only, as in the example above.

Of course, the variable ordering is important:
TTICAD( PHI, [x,y] ): nops(%);

153

We note that the TTICAD theory can extend to a sequence of clauses in which not all have an 
equational constraint.  
For example, consider the problem above but with f1<0 instead of f1=0.
The implicit equational constraint approach cannot be used but TTICAD can, still giving a reduction
compared to a full cad:
PHI2:=[ [[],[f1,g1]], [f2,[g2]] ]:
TTICAD( PHI2, [y,x] ): nops(%);

183

TTICAD will offer a benefit over a full cad unless there are no equational constraints at all
PHI3:=[ [[],[f1,g1]], [[],[f2,g2]] ]:
TTICAD( PHI, [y,x] ): nops(%);

105

Finally, we note that if there is more than one equational constraint then the TTICAD algorithm will
choose which to use based on the heuristics discussed below. 
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> > 

(9.2)(9.2)

> > 

> > 

(9.3)(9.3)

(9.7)(9.7)

> > 

(9.8)(9.8)

> > 

> > 

> > 

> > 

(9.1)(9.1)

(9.5)(9.5)

(9.6)(9.6)

(9.4)(9.4)

8. The ResCAD algorithm for TTICAD

We can also attempt to create a TTICAD using the ResCAD approach. This is a conceptually 
simpler algorithm but not as widely applicable.  
There is no practical reason to use this approach here, since TTICAD is superior. It is included to 
compare for experimentation and to compare with other systems.

The ResCAD set can be calculated using:
rcs:=TTICADResCADSet( PHI, [y,x] );

rcs d 16 x
4
K16 x

2
C1, y

2
Cx

2
K1, 16 x

4
K256 x

3
C1520 x

2
K3968 xC3841, y

2
Cx

2

K2 yK8 xC16

Providing no EC is nullified, a full CAD of this set using McCallum projection will be a TTICAD
CADFull( rcs, [y,x], method=McCallum, output=list): nops(%);

105

This approach is combined into one command:
TTICADResCAD( PHI, [y,x] ): nops(%);

Warning, The output from TTICADResCAD is only guaranteed truth
table invariant if no equational constraint is nullified by a 
point in [x]

105

We gives some examples where the ResCAD approach can fail

Example 1 - An equational constraint is reducible:
Consider
f:=x*y: g:=x+y+1: PHI:=[ [f,[g]] ];

PHId y x, xCyC1

rescad:=TTICADResCAD( PHI, [y,x], output=piecewise ): 
NumCellsInPiecewiseCAD(%);

Warning, The output from TTICADResCAD is only guaranteed truth
table invariant if no equational constraint is nullified by a 
point in [x]

15

Note there is a cell [x=0, y<0] over which f is zero but g changes sign.  We can avoid this error by 
using the full TTICAD algorithm
TTICAD( PHI, [y,x], output=piecewise): NumCellsInPiecewiseCAD
(%);

17

The TTICAD splits this cell, but this is still smaller than the sign-invariant CAD
CADFull( [f,g], [y,x], output=piecewise, method=McCallum): 
NumCellsInPiecewiseCAD(%);

23

Example 2 - An equational constraint is nullified:
Consider
f:=z*y-x^2: g:=x+y+z-1: PHI:=[ [f,[g]] ];

PHId Kx
2
Cz y, xCyCzK1

rescad:=TTICADResCAD( PHI, [z,y,x], output=piecewise ): 
NumCellsInPiecewiseCAD(%);
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(9.13)(9.13)

(9.9)(9.9)

> > 

(9.12)(9.12)

(9.11)(9.11)

> > 

(9.10)(9.10)

> > 

Warning, The output from TTICADResCAD is only guaranteed truth
table invariant if no equational constraint is nullified by a 
point in [y, x]

91

Note there is a cell [x=0, y=0, z free] over which f is zero but g changes sign!  

We can avoid this error by using the full TTICAD algorithm, which splits the cell but is still much 
smaller than a sign-invariant CAD
TTICAD( PHI, [z,y,x], output=piecewise): NumCellsInPiecewiseCAD
(%);
CADFull( [f,g], [z,y,x], output=piecewise, method=McCallum): 
NumCellsInPiecewiseCAD(%);

93

147

Example 3 - An equational constraint has main variable of a lower level than the other 
constraints
Consider
f:=x: g:=x+y+1: PHI:=[ [f,[g]] ];

PHId x, yCxC1

rescad:=TTICADResCAD( PHI, [y,x], output=piecewise ): 
NumCellsInPiecewiseCAD(%);

Warning, The output from TTICADResCAD is only guaranteed truth
table invariant if no equational constraint is nullified by a 
point in [x]
Warning, An equational constraint will certainly be nullified 
since x does not contain the main variable y.
Warning, there are no projection polynomials in [y, x]

3

Such cases are simple to recognize so an extra warning is provided

Note there is a cell [x=0, y free] over which f is zero but g changes sign.  Once again, the TTICAD 
algorithm splits this
TTICAD( [ [f,[g]] ], [y,x], output=piecewise): 
NumCellsInPiecewiseCAD(%);
CADFull( [f,g], [y,x], output=piecewise, method=McCallum): 
NumCellsInPiecewiseCAD(%);

5

9
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(10.2)(10.2)
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> > 

> > 

> > 

> > 
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(10.7)(10.7)

(10.6)(10.6)

(10.5)(10.5)

(10.1)(10.1)

(10.8)(10.8)

> > 

(10.3)(10.3)

> > 

9. TTICAD Formulations and Heuristics

Consider
f11:=y^2+x^2-1: f12:=x^3+y^3-1: g1:=y*x-1/4:
f21:=(x-4)^2+(y-1)^2-1: f22:=(x-4)^3+(y-1)^3-1: g2:=(x-4)*(y-1)
-1/4:

and the problem [ f11=0 /\ f12=0 /\ g1<0 ] \/  [ f21=0 /\ f22=0 /\ g2<0 ]. 

We can solve this with a TTICAD
PHI1:=[ [f11,[f12,g1]], [f21,[f22,g2]] ]:
TTICAD(PHI1, [y,x] ): nops(%);

125

However there are different possible formulations for the TTICAD leading to CADs of different 
sizes, for example
PHI2:=[ [f12,[f11,g1]], [f22,[f21,g2]] ]:
TTICAD(PHI2, [y,x] ): nops(%);

85

We can obtain a list of different formulations using TTICADFormulations on a list of lists, each 
containing two lists - one of equational constraints and one of other constraints.
Forms:=TTICADFormulations( [ [[f11,f12],[g1]], [[f21,f22],[g2]]
] ): nops(%); 

16

There are 16 formulations because it there is not just the choice of equational constraints but also the
choice of splitting QFFs.  E.g.
Forms[3];

y
2
Cx

2
K1, y xK

1

4
, y

3
Cx

3
K1, , y

2
Cx

2
K2 yK8 xC16, y

3
Cx

3
K3 y

2

K12 x
2
C3 yC48 xK66, y xKxK4 yC

15

4

Again, we can predict CAD complexity by running the measures on the projection factors
TTICADProjFactors( PHI1, [y,x] ): sotd(%), ndrr(%,x);
TTICADProjFactors( PHI2, [y,x] ): sotd(%), ndrr(%,x);

65, 14

101, 8

In this case the ndrr measure predicted correctly but the sotd measure did not.  Emphasizing that 
these are just heuristics.

We can use the heuristic command to pick a formulation.  Note that different heuristics may pick 
different formulations.
TTICADHeuristic( [ [[f11,f12],[g1]], [[f21,f22],[g2]]], [y,x], 
heuristic=N): is(%=Forms[6]);

true

TTICADHeuristic( [ [[f11,f12],[g1]], [[f21,f22],[g2]]], [y,x], 
heuristic=S): is(%=Forms[1]);

true

We use the default of N first then S to split.  This also picks the sixth option, (which was PHI2 
above).
is(Forms[6]=expand(PHI2));

true



(10.14)(10.14)

(10.9)(10.9)
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> > 
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(10.15)(10.15)

> > 

> > 

(10.11)(10.11)

> > 

> > 

(10.16)(10.16)

(10.13)(10.13)

(10.10)(10.10)

> > 

(10.12)(10.12)

We demonstrate the weighted heuristic.  This considers the ranking by each heuristic, by default 
giving equal ratio to each.  This can be varied with the Wratio argument which gives the ration 
ndrr:sotd (by default 1:1)
TTICADHeuristic( [ [[f11,f12],[g1]], [[f21,f22],[g2]]], [y,x], 
heuristic=W, Wratio=[1,1]): is(%=Forms[2]);

true

The number of TTICAD formulations can be large so we offer two approaches to reducing the 
heuristic time.
st:=time(): TTICADHeuristic( [ [[f11,f12],[g1]], [[f21,f22],
[g2]]], [y,x]): et:=time()-st;

et d 0.303

1:  Ignore the possibility of splitting QFFs.  Although this can help, it usually doesn't  
TTICADFormulations( [ [[f11,f12],[g1]], [[f21,f22],[g2]]], 
splitting=false ): nops(%);

4

st:=time(): TTICADHeuristic( [ [[f11,f12],[g1]], [[f21,f22],
[g2]]], [y,x], splitting=false ): et:=time()-st;

et d 0.036

2:  Work on each QFF one by one - the so called modular approach.  This will consider less possible
formulations, and ignores the effect of the QFFs interacting.
st:=time(): TTICADHeuristic( [ [[f11,f12],[g1]], [[f21,f22],
[g2]]], [y,x], modular=true): et:=time()-st;

et d 0.036

Note that we can also consider QFF formulations and heuristics individually ourselves
TTICADQFFFormulations( [[f11,f12],[g1]] ): nops(%);

4

TTICADQFFHeuristic( [[f11,f12],[g1]], [y,x] );

y
3
Cx

3
K1, y

2
Cx

2
K1, y xK

1

4

Note that we can give the input to TTICAD directly and it will use the default heuristic on each QFF
to choose the formulation.
TTICAD( [ [[f11,f12],[g1]], [[f21,f22],[g2]]], [y,x] ): nops(%)
;

85



(11.2)(11.2)
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(11.4)(11.4)

> > 
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(11.1)(11.1)

> > 

(11.3)(11.3)

> > 

10. Projection polynomials vs lifting polynomials

When building a full sign-invariant CAD the set of projection polynomials is constructed during 
projection, and then used during lifting so that all the polynomials are sign-invariant on each cell.  
As noted above, this is not the case for ECCAD / TTICAD.  Theorems on the reduced projection 
operators used for these algorithms allow us to (usually) ignore the non-equational constraints when 
lifting.  Hence, while these polynomials are part of the projection set, they are not (usually) part of 
the lifting set.  

The projection polynomials for these algorithms can be calculated independently using the 
commands ECCADProjFactors and TTICADProjFactors.
The lifting polynomials will vary from stack to stack.  For all except the final lift the projection 
polynomials of that level will be used, as normal.  
For the final lift it is usually only the equational constraints which are used.  However, if an 
equational constraint is nullified on a zero dim cell, then the lifting set is extended for that stack 
only to include the corresponding non-equational constraints.
For information on the process change the TTICAD info level to 3..
infolevel[TTICAD]:=3:

f:=x*y: g:=x+y+1: PHI:=[ [f,[g]] ];
TTICAD(PHI, [y,x]): nops(%);

PHId y x, yCxC1

TTI_TTIGenerateStack: the equational constraint factor y*x  is
nullified on the cell  [[4] [regular_chain [[0 0]]]]
TTI_TTIGenerateStack: the cell is zero-dimensional so we can 
continue by expanding the lifting set on this cell.

17

The same process is used for ECCAD:
ECCAD([f,[g]], [y,x] ): nops(%);

TTI_TTIGenerateStack: the equational constraint factor y*x  is
nullified on the cell  [[4] [regular_chain [[0 0]]]]
TTI_TTIGenerateStack: the cell is zero-dimensional so we can 
continue by expanding the lifting set on this cell.

17

infolevel[TTICAD]:=1:

Modifying the lifting set in this way for ECCAD follows from the original theorems but does not 
appear to have been implemented before.  For example, in QEPCAD the full projection set is used 
for lifting. 
Consider the following example:
f1:=x^2+y^2-1: g1:=x*y-1/4:
f2:=(x-4)^2+(y-1)^2-1: g2:=(x-4)*(y-1)-1/4:

ECCAD( [f1*f2, [f1,f2,g1,g2]], [y,x] ): nops(%);

145

Using QEPCAD with f1*f2 declared an EC produces 249 cells.
The reason is that g1 and g2 are included in the lifting set for QEPCAD, but never here.
We can simulate the QEPCAD approach with the optional command LiftAll
ECCAD( [f1*f2, [f1,f2,g1,g2]], [y,x], LiftAll=true ): nops(%);

249



(11.5)(11.5)

> > 
This can also be used with TTICADs.  
PHI:=[ [f1,[g1]], [f2,[g2]] ]:
TTICAD( PHI, [y,x] ): nops(%);
TTICAD( PHI, [y,x], LiftAll=true ): nops(%);

105

185

Note that there is no theoretical reason to use LiftAll.  It is only included here to make comparison 
with QEPCAD easier.
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(12.3)(12.3)

(12.6)(12.6)

(12.5)(12.5)

11. Choosing a Variable ordering

The variable ordering can make a difference to size and computation time of a CAD.
f:=(x-1)*(y^2+1)-1:
CADFull( {f}, [y,x], method=Collins): nops(%);
CADFull( {f}, [x,y], method=Collins): nops(%);

11

3

The VariableOrderings command returns a list of the possible variable orderings for a list of 
variables
VariableOrderings( [y,x] );

y, x , x, y

For many applications there are restrictions on variable orderings.  For example, in quantifier 
elimination all quantified variables must be projected first, and two adjacent quantified variables can
only be switched in the orderings if they have the same quantifier.  The VariableOrderings 
command can consider such situations when given a list of lists of variables (representing variable 
blocks within which different orderings are permitted.
VariableOrderings( [x,y,z,w] ): nops(%);
VariableOrderings( [[x,y], [z,w]] ); nops(%);

24

x, y, z, w , y, x, z, w , x, y, w, z , y, x, w, z

4

VariableOrderings( [w,x,y,z,a,b] ): nops(%);
VariableOrderings( [[w],[x,y,z], [a,b]] ); nops(%);

720

w, x, y, z, a, b , w, x, z, y, a, b , w, y, x, z, a, b , w, y, z, x, a, b , w, z, x, y, a, b , w, z,

y, x, a, b , w, x, y, z, b, a , w, x, z, y, b, a , w, y, x, z, b, a , w, y, z, x, b, a , w, z, x, y,

b, a , w, z, y, x, b, a

12

We can use the ndrr and sotd measures applied to projection polynomials to pick the best variable 
ordering for a problem.
This is encoded in VariableOrderingHeuristic.  The first entry should be a list of variables (or list of 
lists as above).  The second should be the input to the CAD algorithm.  The output is then the 
suggested ordering.
VariableOrderingHeuristic( [y,x], {f} );

x, y

The algorithm assumes a sign-invariant CAD (i.e. using CADFull) but this can be specified, (along 
with the method if using CADFull).
VariableOrderingHeuristic( [y,x], {f}, algorithm=CADFull, 
method=McCallum );

x, y

Note the usual heuristic options
VariableOrderingHeuristic( [y,x], {f}, algorithm=CADFull, 
heuristic=S );

Warning, There are 2 formulations which heuristic S cannot 
differentiate.  Only the first lexicographically has been 
returned.  To display them all run with option SeeAll=true or 



(12.8)(12.8)

(12.9)(12.9)

> > 

> > 

(12.11)(12.11)

> > 

(12.10)(12.10)

> > 

(12.7)(12.7)

to supress this message run with SeeAll=false.

x, y

VariableOrderingHeuristic( [y,x], {f}, algorithm=CADFull, 
heuristic=N );

x, y

We can use this command to choose the best variable ordering for ECCAD and TTICAD as well.  In
general she second argument should be input suitable for the respective algorithm.
f:=x^2+y^2-1: g:=x*(y-1/2):
ECCAD( [f, [g]], [y,x]): nops(%);
ECCAD( [f, [g]], [x,y]): nops(%);

43

23

VariableOrderingHeuristic( [y,x], [f, [g]], algorithm=ECCAD );

x, y

f1:=x^2+y^2-1: g1:=x*y-1/4:
f2:=x^2-y^2-1: g2:=(x-4)*(y-1)-1/4:
PHI:=[ [f1,[g1]], [f2,[g2]] ]:
TTICAD( PHI, [y,x] ): nops(%);
TTICAD( PHI, [x,y] ): nops(%);

101

175
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(13.3)(13.3)

12. Greedy algorithms for variable ordering choices

We have implemented greedy algorithms for choosing variable orderings.  This is where each 
variable is chosen in turn based on the projection polynomials calculated thus far.
For example, the quartic problem:  x is quantified so comes first regardless.  Then there are 6 
variable orderings
ord:=[p,q,r]: CADFull( [x^4+p*x^2+q*x+r], [x,op(ord)], method=
McCallum ): ord,nops(%);
ord:=[p,r,q]: CADFull( [x^4+p*x^2+q*x+r], [x,op(ord)], method=
McCallum ): ord,nops(%);
ord:=[q,p,r]: CADFull( [x^4+p*x^2+q*x+r], [x,op(ord)], method=
McCallum ): ord,nops(%);
ord:=[q,r,p]: CADFull( [x^4+p*x^2+q*x+r], [x,op(ord)], method=
McCallum ): ord,nops(%);
ord:=[r,p,q]: CADFull( [x^4+p*x^2+q*x+r], [x,op(ord)], method=
McCallum ): ord,nops(%);
ord:=[r,q,p]: CADFull( [x^4+p*x^2+q*x+r], [x,op(ord)], method=
McCallum ): ord,nops(%);

p, q, r , 333

p, r, q , 333

q, p, r , 277

q, r, p , 321

r, p, q , 177

r, q, p , 213

So the best ordering in terms of cell count is [x,r,p,q].

The standard heuristic find this:
st:=time(): VariableOrderingHeuristic( [[x],[p,q,r]], [x^4+p*
x^2+q*x+r], heuristic=S, algorithm=CADFull); et:=time()-st;

x, r, p, q

et d 0.029

If we use the greedy algorithm we also find this, but quicker.
st:=time(): VariableOrderingHeuristic( [[x],[p,q,r]], [x^4+p*
x^2+q*x+r], heuristic=S, algorithm=CADFull, greedy=true); et:=
time()-st;

x, r, q, p

et d 0.009

But note that it was a lot quicker.  For larger problems the speed up is more important.

Greedy algorithms are also present for picking the variable orderings for ECCAD:
f:=x^2+y^2+z^2-1: g1:=x*(y-1/2): g2:=z*(y+1/2):

ord:=[x,y,z]: ECCAD( [f, [g1,g2]], ord): ord,nops(%);
ord:=[x,z,y]: ECCAD( [f, [g1,g2]], ord): ord,nops(%);
ord:=[y,x,z]: ECCAD( [f, [g1,g2]], ord): ord,nops(%);
ord:=[y,z,x]: ECCAD( [f, [g1,g2]], ord): ord,nops(%);
ord:=[z,x,y]: ECCAD( [f, [g1,g2]], ord): ord,nops(%);
ord:=[z,y,x]: ECCAD( [f, [g1,g2]], ord): ord,nops(%);

x, y, z , 187

x, z, y , 131
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> > 

> > 

y, x, z , 237

y, z, x , 237

z, x, y , 131

z, y, x , 187

The normal heuristic picks the best two
st:=time(): VariableOrderingHeuristic( [x,y,z], [f,[g1,g2]], 
heuristic=NS, algorithm=ECCAD, SeeAll=true); et:=time()-st;

x, z, y , z, x, y

et d 0.028

The greedy method picks the joint best, and quicker.
st:=time(): VariableOrderingHeuristic( [x,y,z], [f,[g1,g2]], 
heuristic=S, algorithm=ECCAD, greedy=true); et:=time()-st;

z, x, y

et d 0.008

We can also use greedy algorithms for variable blocks:
st:=time(): VariableOrderingHeuristic( [[x],[y,z]], [f,[g1,g2]
], heuristic=S, algorithm=ECCAD, SeeAll=true); et:=time()-st; 
st:=time(): VariableOrderingHeuristic( [[x],[y,z]], [f,[g1,g2]
], heuristic=S, algorithm=ECCAD, greedy=true); et:=time()-st;

x, z, y

et d 0.009

x, z, y

et d 0.005

st:=time(): VariableOrderingHeuristic( [[x,y],[z]], [f,[g1,g2]
], heuristic=S, algorithm=ECCAD, SeeAll=true); et:=time()-st; 
st:=time(): VariableOrderingHeuristic( [[x,y],[z]], [f,[g1,g2]
], heuristic=S, algorithm=ECCAD, greedy=true); et:=time()-st;

x, y, z

et d 0.009

x, y, z

et d 0.004

Finally we consider greedy algorithms for picking the variable ordering for TTICAD:
f1:=x^2+y^2+z^2-1: g1:=x*y*z-1/4: f2:=x^2-y^2-z^2-1: g2:=(x-4)*
(y-1)-1/4+z:
PHI:=[ [f1,[g1]], [f2,[g2]] ]:

Digits:=20: 
ord:=[x,y,z]: TTICAD( PHI, ord): ord,nops(%);
ord:=[x,z,y]: TTICAD( PHI, ord): ord,nops(%);
ord:=[y,x,z]: TTICAD( PHI, ord): ord,nops(%);
ord:=[y,z,x]: TTICAD( PHI, ord): ord,nops(%);
ord:=[z,x,y]: TTICAD( PHI, ord): ord,nops(%);
ord:=[z,y,x]: TTICAD( PHI, ord): ord,nops(%); 
Digits:=10:

x, y, z , 1497

x, z, y , 889

y, x, z , 1135

y, z, x , 351

z, x, y , 985
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z, y, x , 463

st:=time(): VariableOrderingHeuristic( [x,y,z], PHI, heuristic=
S, algorithm="TTICAD", SeeAll=true); et:=time()-st;

x, z, y

et d 0.067

st:=time(): VariableOrderingHeuristic( [x,y,z], PHI, heuristic=
S, algorithm="TTICAD", greedy=true); et:=time()-st;

z, y, x

et d 0.016

Greedy method actually picks better in this example (for sotd).  But with the non-greedy approach 
we can make use of ndrr as well and get the very best (albeit at greater running cost).
st:=time(): VariableOrderingHeuristic( [x,y,z], PHI, heuristic=
NS, algorithm="TTICAD", SeeAll=true); et:=time()-st;

y, z, x

et d 0.117
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13. Layered sub-CADs

A layer of a CAD consists of cells of a given dimension. An l-Layered sub-CAD (l-LCAD) consists 
of the top l layers of a given CAD of =n which is those cells with dimension (n-l+1) to n. The LCAD
commands offer various ways to compute such sub-CADs. 

Direct Layered sub-CADs

If you know how many layers of cells are required simple use the LCAD command with input: a 
list of polynomials, a positive integer specifying the number of layers required, and an ordered 
list of variables. For example:
LCAD([x^2+y^2+z^2-1], 2, [z,y,x]): nops(%);

Warning, no method was specified, McCallum's algorithm will
be used

17

As can be seen above, if no method is specified a warning message appears and McCallum's 
algorithm is used as default. We can specify the projection operator between McCallum and

Collins, which can make a difference in cell counts, as shown below.
F:=[x^2*y^2-z^3+1,x+y+z-1]: vars:=[z,y,x]:
LCAD(F, 1, vars, method=McCallum): nops(%);
LCAD(F, 1, vars, method=Collins): nops(%);

24

48

The output format can also be specified as either list, listwithrep, or piecewise. 
LClist   := LCAD(F, 1, vars, method=McCallum, output=list): 
LClist[1];
LClistwr := LCAD(F, 1, vars, method=McCallum, output=
listwithrep): LClistwr[1];

1, 1, 1 , regular_chain, K9, K9 , K45, K45 , 53, 53

1, 1, 1 , x !RootOf 4 _Z
9
C15 _Z

8
K96 _Z

7
C162 _Z

6
K72 _Z

5
C45 _Z

4

K108 _Z
3
C54 _Z

2
C27, index = real1 , y !RootOf _Z

3
C x

2
C3 xK3  _Z

2

C 3 x
2
K6 xC3  _ZCx

3
K3 x

2
C3 x, index = real1 , z !RootOf Ky

2
 x

2
C_Z

3

K1, index = real
1

, regular_chain, K9, K9 , K45, K45 , 53, 53
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Displaying Layered sub-CADs

It can often be difficult to visualise a CAD.  The piecewise construct in Maple allows for a more 
intuitive display. We emulate the piecewise output within layered sub-CADs by using the 
LCADDisplay procedure. This requires a sub-CAD given in the 'listwithrep' format.
LCADDisplay then produces a tree-like structure containing all cells in a layered sub-CAD. It 

also indicates the terminating sections of a sub-CAD by displaying where branches have been 
terminated. 
Example: A 1-layered sub-CAD of the circle is produced, identifying five two-dimensional cells:
the region x<-1, the regions between x=-1 and x=1 above and below the circle, the interior of the 
circle, and the region x>1.
LCAD([x^2+y^2-1],1,[y,x], method=McCallum, output=
listwithrep): nops(%);
LCADDisplay(%%);

5

regular_chain, K2, K2 , 0, 0 x !K1

"**************" branch = truncated

regular_chain, 0, 0 , K2, K2 y !K Kx
2
C1

"**************" branch = truncated

regular_chain, 0, 0 , 0, 0 K Kx
2
C1 ! y ! Kx

2
C1

"**************" branch = truncated

regular_chain, 0, 0 , 2, 2 Kx
2
C1 ! y

K1 ! x ! 1

"**************" branch = truncated

regular_chain, 2, 2 , 0, 0 1 ! x

If we consider another layer we see that some of the missing parts have been filled in.  Note also 
that we can also just pass piecewise as an output option.
LCAD([x^2+y^2-1],2,[y,x], method=McCallum, output=
listwithrep): nops(%);

11

#LCAD([x^2+y^2-1],2,[y,x], method=McCallum, output=piecewise)
;

There are still cells missing (namely the points (-1,0) and (1,0)). 
LCAD([x^2+y^2-1],3,[y,x], method=McCallum, output=
listwithrep): nops(%);

13

#LCAD([x^2+y^2-1],3,[y,x], method=McCallum, output=piecewise)
;

Of course, this is now the entire CAD, and the same output as:
CADFull( [x^2+y^2-1],[y,x], method=McCallum, output=
piecewise);



(14.2.4)(14.2.4)

(14.3.1)(14.3.1)

> > 

> > 

regular_chain, K2, K2 , 0, 0 x !K1

regular_chain, K1, K1 , K1, K1 y ! 0

regular_chain, K1, K1 , 0, 0 y = 0

regular_chain, K1, K1 , 1, 1 0 ! y

x =K1

regular_chain, 0, 0 , K2, K2 y !K Kx
2
C1

regular_chain, 0, 0 , K1, K1 y =K Kx
2
C1

regular_chain, 0, 0 , 0, 0 K Kx
2
C1 ! y ! Kx

2
C1

regular_chain, 0, 0 , 1, 1 y = Kx
2
C1

regular_chain, 0, 0 , 2, 2 Kx
2
C1 ! y

K1 ! x ! 1

regular_chain, 1, 1 , K1, K1 y ! 0

regular_chain, 1, 1 , 0, 0 y = 0

regular_chain, 1, 1 , 1, 1 0 ! y

x = 1

regular_chain, 2, 2 , 0, 0 1 ! x

Recursive Layered sub-CADs

The LCADRecursive command returns a layered sub-CAD and an inert command that can be

evaluated to return the next layer of the sub-CAD.  This command is useful if you do not know 
in advance how many layers are required and which to compute new layers incrementally 
without repeating computations.  
The command requires four inputs:  a list of polynomials, a list of variables and two lists of cells.
The first of these is a list of terminating sections (cells where a previous call 
to LCADRecursive  halted) and the second is the previously computed layered sub-CAD. If 

the user inputs empty lists for these then the command will produce the initial 1-layered sub-
CAD.  
The output of the function is two-fold: a layered sub-CAD containing one more layer than the 
one in the fourth input, and an inert LCADRecursive call which can be used to build the next 

layer.
For example:
LcadA, RecCallA := LCADRecursive([x^2+y^2+z^2-1], [x,y,z], 
[], [], method=McCallum, output=listwithrep):
nops(LcadA); #LCADDisplay(LcadA);

7

If we examine the inert call we see it is a complete LCADRecursive call, preceded by the % 

symbol (a Maple standard to render a function call inert). Stored within the call are the original 
input polynomials and variables, the terminating sections and layered sub-CAD of the previous 
call, and any options specified. 
op(0,RecCallA);
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#op(RecCallA);

%LCADRecursive

To evaluate the inert call, you use Maple's value command. 
LcadB, RecCallB := value(RecCallA):
nops(LcadB);

17

We can repeat this until the entire CAD is calculated
LcadC, RecCallC := value(RecCallB):
nops(LcadC);

23

LcadD, RecCallD := value(RecCallC):
nops(LcadD);

25

Of course, this is the same output as:
CADFull([x^2+y^2+z^2-1], [x,y,z], method=McCallum, output=
listwithrep): nops(%);

25

Computing the sub-cad recursively is comparable in terms of efficiency to computing it directly
F:=[z^2+w^2-2,z^3-w+2]: vars:=[z,w]:
s0:=time(): cad1 := CADFull(F,vars,method=McCallum): s1:=time
()-s0; nops(cad1);

s1 d 0.244

53

F:=[u^2+v^2-2,u^3-v+2]: vars:=[u,v]:
t0:=time(): 
LC1,RC1:=LCADRecursive(F,vars,[],[],method=McCallum,
resetproj=true): 
LC2,RC2:=value(RC1): 
LC3,RC3:=value(RC2): 
t1:=time()-t0; nops(LC3);

t1 d 0.276

53

A note on timings in Maple

It can be difficult to compare routines in Maple as Maple will often reuse previous results to 
speed up function calls. Hence a second call computing the same CAD or sub-CAD can seem
quicker than it should, as below:
F:=[x^2+y^2-2,x^3-y+2]: vars:=[x,y]:

t0:=time(): 
LC1,RC1:=LCADRecursive(F,vars,[],[],method=McCallum,
resetproj=true): 
LC2,RC2:=value(RC1): 
LC3,RC3:=value(RC2): 
t1:=time()-t0; nops(LC3);

s0:=time(): cad1 := CADFull(F,vars,method=McCallum): s1:=
time()-s0; nops(cad1);

t1 d 0.271

53
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s1 d 0.167

53

Hence in the demonstration above we used different variables to avoid this.  The optimal 
approach would actually be to start separate Maple sessions for each computation!

Optionally, the LCADRecursive procedure can store the projection polynomials in a global 

variable so that they do not need to be recomputed for each call.  The only correctness check 
performed is that the input polynomials are a subset of these, which can be misled.  Hence the 
default behavior is to recompute each time.  This can be overridden using resetproj=
false.
Lcad,RecCall:=LCADRecursive([x*y*z-1/4],[x,y,z],[],[],
resetproj=true): 
nops(Lcad);

8

infolevel[ProjectionCAD]:=3:
F:=[u^2+v^2-2,u^3-v+2]: vars:=[u,v]:
LC1,RC1:=LCADRecursive(F,vars,[],[],method=McCallum,
resetproj=false): nops(LC1);
LC2,RC2:=value(RC1): nops(LC2);
LC3,RC3:=value(RC2): nops(LC3);
infolevel[ProjectionCAD]:=1:

LCAD_Recursive: Projection polynomials to be reset as no 
existing cells passed in.
CADFull: produced set of 4 projection factors using the 
McCallum algorithm.
PCAD_ProjCADLift: produced CAD of [v] -space with 11 cells

18

LCAD_Recursive: Projection polynomials left as defined.

44

LCAD_Recursive: Projection polynomials left as defined.

53

Layered sub-TTICADs

It is possible to create layered TTICADs, by using the TTICAD projection operator, creating the 
appropriate layered (n-1)-dimensional sub-CAD, and lifting over using TTICAD lifting whilst 
respecting cell dimensions. This is implemented in the LTTICAD command, which takes a list of

quantifier free formulae, with designated equational constraints, in the same format as the
TTICAD command, along with the number of required layers and ordered variables. 
PHI := [ [x^2+y^2+z^2-1,[x*y*z-1/4]], [(x-1)^2+(y-1)^2+(z-1)
^2-1,[(x-1)*(y-1)*(z-1)-1/4]] ]; vars:=[x,y,z]:

PHId x
2
Cy

2
Cz

2
K1, x y zK

1

4
, xK1

2
C yK1

2
C zK1

2
K1, x

K1  yK1  zK1 K
1

4

Digits:=20:
st:=time():
LTTICAD(PHI,1,vars): N:=nops(%);
et:=time()-st: print("1 Layer: ", et, N);
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st:=time():
LTTICAD(PHI,2,vars): N:=nops(%);
et:=time()-st: print("2 Layer: ", et, N);
st:=time():
LTTICAD(PHI,3,vars): N:=nops(%);
et:=time()-st: print("3 Layer: ", et, N);
st:=time():
LTTICAD(PHI,4,vars): N:=nops(%);
et:=time()-st: print("4 Layer: ", et, N);
Digits:=10:

N d 93

"1 Layer: ", 3.336, 93

N d 299

"2 Layer: ", 7.210, 299

N d 455

"3 Layer: ", 7.971, 455

N d 497

"4 Layer: ", 7.985, 497

Digits:=20: st:=time(): TTICAD(PHI,vars): N:=nops(%): et:=
time()-st: print("Full TTTICAD: ", et, N); Digits:=10:

"Full TTTICAD: ", 7.764, 497

Cell Distributions in CADs/TTICADs

It can be useful to look at the distribution of cell dimensions within CADs. Our experiments 
suggest CADs often have cell dimensions roughly in a binomial distribution with high p value. 
This can be used to predict the size of final CADs by considering the 1-layered sub-CAD (which 
is considerably easier to compute). To see the total number of cells of each dimension (from 0 to
n) use the CADDist command. 
CADDist([x^2+y^2-1],[x,y]);

2, 6, 5

To get an easier feel for comparing how the cells are distributed between different CADs, the 
normed distribution can be computed with the LCADNormDist command, which can then be 

plotted on the same scale.
NormDist1 := CADNormDist([x^2+y+z-1,x*z-1,x*y-1],[x,y,z]);
NormDist2 := CADNormDist([x^2+y+z-1,x*z-1,x*y-1],[z,y,x]);
plot([[seq([i,NormDist1[i]],i=1..nops(NormDist1))],[seq([i,
NormDist2[i]],i=1..nops(NormDist2))]]);

NormDist1 d
76

1185
,

71

237
,

172

395
,

238

1185

NormDist2 d
1

85
,

16

85
,

41

85
,

27

85
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0.1

0.2

0.3

0.4

There are analogous commands for TTICADs: TTIDist and TTINormDist. 
TTICADDist([[x^2+y-1,[x+y-1]]],[x,y]);
TTICADNormDist([[x^3+y^2-1,[x*y+y^2-1,x^3-1]],[y^3-x,[x^2-y]]
],[x,y]);

3, 9, 7

11

63
,

31

63
,

1

3
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14. Variety sub-CADs

When a problem contains an equational constraint (EC), an equation that must be satisfied for a 
solution, we can limit our output to the variety it defines. We call this a Variety sub-CAD (VCAD)
Suppose the EC is f=0.  Our implementations is restricted to the case where all factors of f contain 
the main variable. 

VCADs

We can produce a variety sub-CAD using the VCAD command. This uses the ECCAD projection 

operator and lifting procedure. However, it will only return the sections where f=0. The input is 
the same as ECCAD which takes a list consisting of the equational constraint and a list of non-

equational constraint polynomials. 
 VCAD(  [x^2+y^2-1,[x*y-1/4,x^3-y^2]],[x,y]): nops(%);
ECCAD(  [x^2+y^2-1,[x*y-1/4,x^3-y^2]],[x,y]): nops(%);
CADFull([x^2+y^2-1, x*y-1/4,x^3-y^2], [x,y],method=McCallum):
nops(%);

28

73

161

Variety sub-TTICADs

We can also create a Variety sub-TTICAD. If each quantifier free formula has equational 

constraint fi=0, then VTTICAD returns the cells satisfying ?
i = 1

k

fi = 0.

Digits:=20:
PHI := [[x^2+y^2+z^2-1,[x*y*z-1/4]],[(x-1)^2+(y-1)^2+(z-1)^2
-1,[(x-1)*(y-1)*(z-1)-1/4]]]; vars:=[x,y,z]:
VTTICAD(PHI,vars): nops(%);
TTICAD(PHI,vars): nops(%);
Digits:=10:

PHId x
2
Cy

2
Cz

2
K1, x y zK

1

4
, xK1

2
C yK1

2
C zK1

2
K1, x

K1  yK1  zK1 K
1

4

176

497
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Layered variety sub-CAD

We can combine layered and variety sub-CADs. For an input with equational constraint fi = 0, an

l-layered variety sub-CAD consists of the top l layers of cells on the variety defined by fi = 0. 

To compute a layered variety sub-CAD the LVCAD command can be used. This takes a list 
containing an equational constraint and a list of non-equational constraints, along with the 
number of layers required and a list of variables.  
LVCAD([x^2+y^2-1,[x*y-1/4,x^3-y^2]],1,[x,y]): nops(%);

14

Finally, we can combine all available technology to produce a layered variety sub-TTICAD 
(LVTTICAD). The LVTTICAD command takes the same input as a TTICAD along with the 

number of layers required. 
PHI := [[x^2+y^2+z^2-1,[x*y*z-1/4]],[(x-1)^2+(y-1)^2+(z-1)^2
-1,[(x-1)*(y-1)*(z-1)-1/4]]]; vars:=[x,y,z]:

PHId x
2
Cy

2
Cz

2
K1, x y zK

1

4
, xK1

2
C yK1

2
C zK1

2
K1, x

K1  yK1  zK1 K
1

4

Digits:=20:
LVTTICAD(PHI,1,vars): nops(%);
LTTICAD(PHI,1,vars): nops(%);
TTICAD(PHI,vars): nops(%);
Digits:=10:

48

93

497
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15. Avoiding theoretical failure with Sub-CAD

Recall the example from Section 3
f:=a*e+b*d+c*e+d+e; vars:=[a,b,c,d,e];

f d a eCb dCc eCdCe

vars d a, b, c, d, e

CADFull( [f], vars, method=McCallum  ): nops(%);
Warning, The input is not well-oriented (there is 
nullification on cell [1, 2, 2]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [2, 2, 1]).  The output cannot be 
guaranteed correct.
Warning, The input is not well-oriented (there is 
nullification on cell [3, 4, 2]).  The output cannot be 
guaranteed correct.

241

The output could not be guarenteed correct (i.e. sign-invariant) as the input failed a technical 
condition known as well-orientedness.  
For the condition to occur at all is rare, and when it does, it likely only affects a small part of the 
CAD.
Hence in cases where a CAD cannot be computed due to this theoretical failure, a sub-CAD is often 
still possible.
LCAD([f],1,[a,b,c,d,e], method=McCallum,failure=err): nops(%);

48

LCAD([f],2,[a,b,c,d,e], method=McCallum,failure=err): nops(%);

148

LCAD([f],3,[a,b,c,d,e], method=McCallum, failure=err): 
Error, (in LCAD_ProjCADLiftNLayered) there is nullification on
cell [1, 2, 2] which has dim>0. The outputted CAD cannot be 
guaranteed sign-invariant.

We see with this example that a 1 or 2 layered sub-CAD does not trigger the message.  Hence we 
can get descriptions of the cells of full dimension, and the cells of one dimension lower without any 
problem.

In theory we could also avoid such failure with variety sub-CADs.  However, our present 
implementation only works with varieties with all components of full dimension: lifting to these 
does not carry a risk of failure (as it is the final lift so only sign-nvariance is required).   


