In a search for cheaper computer algebra tools to answer real world problems

AmirHosein Sadeghimanesh

Coventry University
a.h.sadeghimanesh@gmail.com
ad6397@coventry.ac.uk

Math CU Seminar

EPSRC grant EP/T015748/1 (The DEWCAD Project) Hungarian grant NKFIH KKP 129877

In a search for cheaper computer algebra tools to answer real world problems

AmirHosein Sadeghimanesh อาเมียร์โฮเซน ซาเดกิมาเนซ

Coventry University
a.h.sadeghimanesh@gmail.com ad6397@coventry.ac.uk

Math CU Seminar

EPSRC grant EP/T015748/1 (The DEWCAD Project) Hungarian grant NKFIH KKP 129877

In a search for cheaper computer algebra tools to answer real world problems

AmirHosein Sadeghimanesh อาเมียร์

Coventry University
a.h.sadeghimanesh@gmail.com
ad6397@coventry.ac.uk

Math CU Seminar

EPSRC grant EP/T015748/1 (The DEWCAD Project) Hungarian grant NKFIH KKP 129877

Contents

- What is Computer Algebra?
- Why Computer Algebra?
- A question from Population Dynamics.
- Asking help from Computer Algebra.
- Limitations of Computer Algebra.
- Asking help from humans :)

What is Computer Algebra?

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ
Algebra $=$ พีชคณิต

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ Algebra $=$ พีชคณิต \leftarrow Symbol $=$ สัญลลักษณ์

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ Algebra $=$ พีชคณิต \leftarrow Symbol $=$ สัญลลักษณ์

Example

If the length of an edge of a square shape land is 400 meters, then its area is 1 rai.

> ถ้าความยาวของที่ดินรูปสี่เหลี่ยมจัตุรัส เท่ากับ ๔๐ะ เมตร พื้นที่ของที่ดันนั่นเากับ ๒ ไร่

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ Algebra $=$ พีชคณิต \leftarrow Symbol $=$ สัญลลักษณ์

Example

If the length of an edge of a square shape land is 800 meters, then its area is 4 rai.

$$
\begin{aligned}
& \text { ถ้าความยาวของที่ดินรูปสี่เหลี่ยมจัตุรัส } \\
& \text { เท่ากับ ๘ロ๐ เมตร พื่นที่ของที่ดั้นเท่ากับ } \\
& \text { ๔ ไร่ }
\end{aligned}
$$

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ
Algebra $=$ พีชคณิต \leftarrow Symbol $=$ สัญลักษณ์

Example

If the length of an edge of a square shape land is 100 meters, then its area is $\frac{1}{16}$ rai.

> ถ้าความยาวของที่ดินรูปสี่เหลี่ยมจัตัรัส เท่ากับ ตธธ เมตร พื่นที่ของที่ดันเท่ากับ ต/ต่อ ไร่

What is Computer Algebra?

Computer $=$ คอมพิวเตอร์ \leftarrow Compute $=$ คำนวณ Algebra $=$ พีชคณิต \leftarrow Symbol $=$ สัญลลักษณ์

Example

If the length of an edge of a square shape land is x meters, then its area is $\frac{1}{16} x^{2}$ rai.

ถ้าความยาวของที่ดินรูปสี่เหลี่ยมจัตุรัส
เท่ากับ x เมตร พั้นที่ของที่ดินัั้นเท่ากับ

$$
\frac{1}{1600} x^{2} \text { ไร่ }
$$

Why Computer Algebra?

Few examples of questions that computer algebra can solve:

- Graph coloring,
- Hypergraph coloring,
- Feasibility of nonlinear programming problems,
- Finding extreme points of a convex set,
- Quantifier elimination in nonlinear real arithmetic logic,
- Finding bifurcations of a nonlinear ODE system.

Population growth

Logistic growth

Time
$\dot{N}=r N\left(1-\frac{N}{K}\right)$

Population growth

Logistic growth

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)
$$

(Strong) Allee effect

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)\left(\frac{N}{A}-1\right)
$$

Population growth

Logistic growth

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)
$$

(Strong) Allee effect

$$
\dot{N}=N(1-N)(N-b)
$$

Main model

n-connected populations with Allee effect.

$$
\dot{N}_{i}=N_{i}\left(1-N_{i}\right)\left(N_{i}-b\right)-(n-1) a N_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} a N_{j}, \quad i=1, \cdots, n .
$$

Main model

n-connected populations with Allee effect.

$$
N_{i}\left(1-N_{i}\right)\left(N_{i}-b\right)-(n-1) a N_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} a N_{j}=0, \quad i=1, \cdots, n
$$

This parametric system has n variables, $N_{i} s$, and 2 parameters, the Allee effect parameter b and the strength of connectivity a.

Main model

n-connected populations with Allee effect.

$$
N_{i}\left(1-N_{i}\right)\left(N_{i}-b\right)-(n-1) a N_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} a N_{j}=0, \quad i=1, \cdots, n
$$

This parametric system has n variables, $N_{i} s$, and 2 parameters, the Allee effect parameter b and the strength of connectivity a.
The model has 3^{n} non-negative steady states for small a and 3 for large a.

Main model

n-connected populations with Allee effect.

$$
N_{i}\left(1-N_{i}\right)\left(N_{i}-b\right)-(n-1) a N_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} a N_{j}=0, \quad i=1, \cdots, n
$$

This parametric system has n variables, $N_{i} \mathrm{~s}$, and 2 parameters, the Allee effect parameter b and the strength of connectivity a.
The model has 3^{n} non-negative steady states for small a and 3 for large a.

Questions

- What happens for not very small and not very large values of a ?
- Is it true that the number of non-negative solutions is non-increasing with respect to a ?

Approach no. 1

Original system
$\left\{x^{2}+b x+c=0\right\}$

Approach no. 1

$$
\begin{aligned}
& \text { Original system } \\
& \left\{x^{2}+b x+c=0\right\} \\
& \| \text { Discriminant Variety (Elimination via Gröbner bases). } \\
& \left\{b^{2}-4 c\right\}
\end{aligned}
$$

Approach no. 1

```
Original system
{\mp@subsup{x}{}{2}+bx+c=0}
|iscriminant Variety (Elimination via Gröbner bases).
{b}\mp@subsup{b}{}{2}-4c}
| (open) CAD
```


Approach no. 1

Original system

$\left\{x^{2}+b x+c=0\right\}$
Discriminant Variety (Elimination via Gröbner bases).
$\left\{b^{2}-4 c\right\}$.
\downarrow (open) CAD
$\#\left(f^{-1}(0) \cap \mathbb{R}\right)=$
$\{2 ;(c, b) \in$ cells $1,2,4$
$0 ;(c, b) \in$ cell 3

Approach no. 1

Original system

$\left\{x^{2}+b x+c=0\right\}$
\downarrow Discriminant Variety (Elimination via Gröbner bases).
$\left\{b^{2}-4 c\right\}$.
\downarrow (open) CAD
$\#\left(f^{-1}(0) \cap \mathbb{R}\right)=$
$\{2 ;(c, b) \in$ cells $1,2,4$
$\{0 ;(c, b) \in$ cell 3

Open CAD with respect to the discriminant variety is already implemented in a Maple package.

Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional
CAD* of the model for $n=2$.

Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional CAD* of the model for $n=2$. But not for $n=3$.

Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional CAD* of the model for $n=2$. But not for $n=3$.

- Why?

The complexity of this algorithm is doubly exponential!

- What is doubly exponential complexity?

See shorturl.at/bfvyI

Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional CAD* of the model for $n=2$. But not for $n=3$.

Let's take a step back. By fixing the value of b, Maple* can compute the 1-dimensional CAD* of the model for $n=2,3,4$, but not $n=5$.
As an example the case $n=2$ for $b=0.2$ is shown here.

Approach no. 2 (used in ref. 2)

Using a numeric search.

Finding sections of the 2-dimensional CAD using 1-dimensional CADs for some finite samples of a parameter.

Approach no. 2 (used in ref. 2)

Using a numeric search.

Finding sections of the 2-dimensional CAD using 1-dimensional CADs for some finite samples of a parameter.

Then using a numeric search to find where the behavior changes.

Approach no. 2 (used in ref. 2)

Using a numeric search.

Finding sections of the 2-dimensional CAD using 1-dimensional CADs for some finite samples of a parameter.

Then using a numeric search to find where the behavior changes.

Approach no. 2 (used in ref. 2)

Up to 7 digits accuracy after the decimal point

A discovery

The number of steady states is not always decreasing monotonically by increasing a.

Approach no. 2 (used in ref. 2)

Up to 7 digits accuracy after the decimal point

A discovery

The number of steady states is not always decreasing monotonically by increasing a.

Further investigation on approach no. 1

(1) Why couldn't we use approach 1?

Further investigation on approach no. 1

(1) Why couldn't we use approach 1 ?

Computation of the required Gröbner basis for the discriminant variety of approach 1 is not feasible on our computer.

Further investigation on approach no. 1

(1) Why couldn't we use approach 1 ?

Computation of the required Gröbner basis for the discriminant variety of approach 1 is not feasible on our computer.
(2) Is there any other way to compute the discriminant variety?

Further investigation on approach no. 1

(1) Why couldn't we use approach 1 ?

Computation of the required Gröbner basis for the discriminant variety of approach 1 is not feasible on our computer.
(2) Is there any other way to compute the discriminant variety?

Yes, using resultant techniques.

What is resultant?

Simple resultant

It receives 2 equations in n variables and returns 1 equation in $n-1$ variables.

$$
x^{2}+b x+c=0
$$

What is resultant?

Simple resultant

It receives 2 equations in n variables and returns 1 equation in $n-1$ variables.

$$
\begin{aligned}
& x^{2}+b x+c=0 \\
& 2 x+b=0
\end{aligned}
$$

What is resultant?

Simple resultant

It receives 2 equations in n variables and returns 1 equation in $n-1$ variables.

$$
\begin{aligned}
& x^{2}+b x+c=0 \\
& 2 x+b=0 \\
& \left(x^{2}+b x+c=0\right) \cap(2 x+b=0)
\end{aligned}
$$

What is resultant?

Simple resultant

It receives 2 equations in n variables and returns 1 equation in $n-1$ variables.

$$
\begin{aligned}
& x^{2}+b x+c=0 \\
& 2 x+b=0 \\
& \left(x^{2}+b x+c=0\right) \cap(2 x+b=0) \\
& \operatorname{res}_{x}\left(x^{2}+b x+c, 2 x+b\right)=b^{2}-4 c
\end{aligned}
$$

What is resultant?

Simple resultant

It receives 2 equations in n variables and returns 1 equation in $n-1$ variables.

$$
\begin{aligned}
& x^{2}+b x+c=0 \\
& 2 x+b=0 \\
& \left(x^{2}+b x+c=0\right) \cap(2 x+b=0) \\
& \operatorname{res}_{x}\left(x^{2}+b x+c, 2 x+b\right)=b^{2}-4 c \\
& b^{2}-4 c=0
\end{aligned}
$$

Approach no. 3 (used in ref. 1)

ResChainSimple 0.5 second

ResChainBranching 5 milliseconds

Dixon resultant 7 minutes

Approach no. 4 (used in ref. 1)

(1) Dixon resultant has lower worst case complexity than Gröbner basis.

Approach no. 4 (used in ref. 1)

(1) Dixon resultant has lower worst case complexity than Gröbner basis.
(2) The computations of the three multivariate resultant techniques does not finish for $n=4$ on our computer.

Approach no. 4 (used in ref. 1)

(1) Dixon resultant has lower worst case complexity than Gröbner basis.
(2) The computations of the three multivariate resultant techniques does not finish for $n=4$ on our computer.
(3) Is it the end of the story?

Approach no. 4 (used in ref. 1)

(1) Dixon resultant has lower worst case complexity than Gröbner basis.
(2) The computations of the three multivariate resultant techniques does not finish for $n=4$ on our computer.
(3) Is it the end of the story?

No. Let's use Border Polynomials.

Approach no. 4 (used in ref. 1)

(1) Dixon resultant has lower worst case complexity than Gröbner basis.
(2) The computations of the three multivariate resultant techniques does not finish for $n=4$ on our computer.
(3) Is it the end of the story?

No. Let's use Border Polynomials.

For $n=6$ it takes 118 seconds. For $n=7$ we get a Maple error message.

What is new?

We implemented new algorithms in Maple that can handle larger size examples of parametric system of equations (and inequalities) with the following properties;
(1) They are free of Gröbner bases computation.
(2) They are free of numeric approximations.

What is new?

We implemented new algorithms in Maple that can handle larger size examples of parametric system of equations (and inequalities) with the following properties;
(1) They are free of Gröbner bases computation.
(2) They are free of numeric approximations.

Does it mean that the former numerical approach (approach 1) is not interesting anymore?
No, one still can equip approach 2 on top of any of the other approaches and go even further in the size of examples that can be handled by a normal computer.

If you feel artistic

Growing Allee flowers

Displayed at Maple art gallery 2022.

References

(1) AmirHosein Sadeghimanesh, Matthew England, Resultant tools for Parametric Polynomial Systems with Application to Population Models, in preparation, 2022.
(2) Gergely Röst, AmirHosein Sadeghimanesh, Exotic bifurcations in three connected populations with Allee effects, International Journal of Bifurcation and Chaos, Vol. 31, 2021, DOI: 10.1142/S0218127421502023.
(3) Gergely Röst, AmirHosein Sadeghimanesh, Unidirectional migration of populations with Allee effect, Letters in Biomathematics, in press, 2022.

Thank you for listening.

