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What is Computer Algebra?

Computer = ←− Compute =

Algebra = ←− Symbol =

Example

If the length of an edge of a square shape land is x meters, then its area is
1
16x

2 rai.
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Why Computer Algebra?

Few examples of questions that computer algebra can solve:

Graph coloring,

Hypergraph coloring,

Feasibility of nonlinear programming problems,

Finding extreme points of a convex set,

Quantifier elimination in nonlinear real arithmetic logic,

Finding bifurcations of a nonlinear ODE system.
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Population growth

Logistic growth

Ṅ = rN(1− N
K )

(Strong) Allee effect
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Ṅ = rN(1− N
K )(NA − 1)

5 / 17



Population growth

Logistic growth
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Main model

n-connected populations with Allee effect.

Ṅi = Ni (1− Ni )(Ni − b)− (n − 1)aNi +
n∑

j=1
j 6=i

aNj , i = 1, · · · , n.

This parametric system has n variables, Ni s, and 2 parameters, the Allee
effect parameter b and the strength of connectivity a.

The model has 3n non-negative steady states for small a and 3 for large a.

Questions

What happens for not very small and not very large values of a?

Is it true that the number of non-negative solutions is non-increasing
with respect to a?
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Approach no. 1

Original system
{x2 + bx + c = 0}

ww� Discriminant Variety (Elimination via Gröbner bases).

{b2 − 4c}.ww� (open) CAD

#(f −1(0) ∩ R) ={
2 ; (c , b) ∈ cells 1,2,4
0 ; (c , b) ∈ cell 3

Open CAD with respect to the discriminant variety is already implemented
in a Maple package.
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Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional
CAD* of the model for n = 2.

But not
for n = 3.
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Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional
CAD* of the model for n = 2. But not
for n = 3.

Why?
The complexity of this algorithm is doubly exponential!

What is doubly exponential complexity?
See shorturl.at/bfvyI
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Using approach 1 (used in ref. 3)

Recall the n-patches model.

Maple* can compute the 2-dimensional
CAD* of the model for n = 2. But not
for n = 3.

Let’s take a step back.
By fixing the value of b, Maple* can
compute the 1-dimensional CAD* of the
model for n = 2, 3, 4, but not n = 5.

As an example the case n = 2 for
b = 0.2 is shown here.
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Approach no. 2 (used in ref. 2)

Using a numeric search.

Finding sections of the 2-dimensional
CAD using 1-dimensional CADs for some
finite samples of a parameter.
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Then using a numeric search to find
where the behavior changes.
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Approach no. 2 (used in ref. 2)

Up to 7 digits accuracy after the decimal point

A discovery

The number of steady states is not always decreasing monotonically by
increasing a.
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Further investigation on approach no. 1

1 Why couldn’t we use approach 1?

Computation of the required Gröbner basis for the discriminant
variety of approach 1 is not feasible on our computer.

2 Is there any other way to compute the discriminant variety?
Yes, using resultant techniques.
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What is resultant?

Simple resultant

It receives 2 equations in n variables and returns 1 equation in n − 1
variables.

x2 + bx + c = 0
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Approach no. 3 (used in ref. 1)

ResChainSimple

0.5 second

ResChainBranching

5 milliseconds

Dixon resultant
7 minutes
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Approach no. 4 (used in ref. 1)

1 Dixon resultant has lower worst case complexity than Gröbner basis.

2 The computations of the three multivariate resultant techniques does
not finish for n = 4 on our computer.

3 Is it the end of the story?
No. Let’s use Border Polynomials.

For n = 6 it takes 118 seconds. For n = 7 we get a Maple error
message.
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What is new?

We implemented new algorithms in Maple that can handle larger size
examples of parametric system of equations (and inequalities) with the
following properties;

1 They are free of Gröbner bases computation.

2 They are free of numeric approximations.

Does it mean that the former numerical approach (approach 1) is not
interesting anymore?
No, one still can equip approach 2 on top of any of the other approaches
and go even further in the size of examples that can be handled by a
normal computer.
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If you feel artistic

Growing Allee flowers

Displayed at Maple art gallery 2022.
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